DOI QR코드

DOI QR Code

Improvement of Sparse Representation based Classifier using Fisher Discrimination Dictionary Learning for Malignant Mass Detection

피셔 분별 사전학습을 이용해 개선된 Sparse 표현 기반 악성 종괴 검출

  • 김성태 (한국과학기술원 전기 및 전자공학과) ;
  • 이승현 (한국과학기술원 전기 및 전자공학과) ;
  • 민현석 (한국과학기술원 전기 및 전자공학과) ;
  • 노용만 (한국과학기술원 전기 및 전자공학과)
  • Received : 2013.01.29
  • Accepted : 2013.02.25
  • Published : 2013.05.31

Abstract

Mammography, the process of using X-ray to examine the woman breast, is the one of the effective tools for detecting breast cancer at an early state. In screening mammogram, Computer-Aided Detection(CAD) system helps radiologist to diagnose cases by detecting malignant masses. A mass is an important lesion in the breast that can indicate a cancer. Due to various shapes and unclear boundaries of the masses, detecting breast masses is considered a challenging task. To this end, CAD system detects a lot of regions of interest including normal tissues. Thus it is important to develop the well-organized classifier. In this paper, we propose an enhanced sparse representation (SR) based classifier using Fisher discrimination dictionary learning. Experimental results show that the proposed method outperforms the existing support vector machine (SVM) classifier.

X-ray를 이용한 여성의 유방암 검사인 유방조영술은 유방암의 초기 단계에서의 진단을 위한 효과적인 방법이다. 컴퓨터 지원 검출(CAD) 시스템은 유방조영술을 통한 진단 시 의사가 놓치기 쉬운 유방암의 징후인 종괴의 검출을 도와 유방암 진단율을 높이는 수단이다. 종괴는 다양한 모양을 지니며 경계가 뚜렷하지 않기 때문에 검출이 어렵고 결과적으로 비-종괴 영역을 포함한 많은 수의 종괴 후보영역이 CAD 시스템에서 검출된다. 따라서 CAD 시스템 설계 시 검출된 많은 수의 종괴 후보영역으로부터 실제 악성 종괴 영역을 분류할 수 있도록 우수한 성능의 분류기가 요구된다. 본 논문에서는 피셔 분별 사전학습을 통해 개선된 Sparse 표현(SR) 기반 분류방법을 제안한다. 개선된 SR 기반 분류기가 기존의 CAD 시스템에서 주로 사용되어온 Support Vector Machine (SVM) 분류기 보다 우수함을 비교실험을 통해 확인했다.

Keywords

References

  1. K. Bovis, S. Singh, J. Fieldsend, and C. Pinder, "Identification of Masses in Digital Mammograms with MLP and RBF Nets," Proc. of the I6-INNS -ENNS Int'l Joint Conf. on Neural Networks, Vol. 1, pp. 342-347, 2000.
  2. Daniel B. Kopans, "The Positive Predictive Value of Mammography," American Journal of Roentgenology Vol. 158, No. 3, pp. 521-526, 1992. https://doi.org/10.2214/ajr.158.3.1310825
  3. J. Wright, A.Y. Yang, A. Ganesh, S.S. Sastry, and Y. Ma, "Robust Face Recognition via Sparse Representation," IEEE Transaction on Pattern Recognition and Machine Intelligence, Vol. 31, No. 2, pp. 210-227, 2009. https://doi.org/10.1109/TPAMI.2008.79
  4. 김형일, 엄원용, 노용만, "Sparse 표현을 이용한 X선 흡수 영상 개선," 한국멀티미디어학회 논문지, 제15권, 제10호, pp. 1205-1211, 2012. https://doi.org/10.9717/kmms.2012.15.10.1205
  5. K. Huang, and S. Aviyente, "Sparse Representation for Signal Classification," Advances in Neural Information Processing Systems, pp. 609-616, 2007.
  6. B.A. Olshausen and D.J. Field, "Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1?," Vision Research, Vol .37, No. 23, pp. 3311-3325, 1997. https://doi.org/10.1016/S0042-6989(97)00169-7
  7. M. Yang, L. Zhang, X. Feng, and D. Zhang, "Fisher Discrimination Dictionary Learning for Sparse Representation," Int'l Conf. on Computer Vision, pp. 543-550, 2011.
  8. M. Heath, K. Bowyer, D. Kopans, R. Moore, and P.J. kegelmeyer, "The Digital Database for Screening Mammography," Proc. of 5th Int'l Conf. on Digital Mammography, pp. 212-218, 2000.
  9. D.H. Kim, J.Y. Choi, S.H. Choi, and Y.M. Ro, "Mammographic Enhancement with Combining Local Statistical Measures and Sliding Band Filter for Improved Mass Segmentation in Mammograms," Proc. of the SPIE Medical Imaging, Vol. 8315, pp. 83151Z-83151Z-6, 2012.
  10. B.W. Hong, and J.M. Bready, "A Topographic Representation for Mammogram Segmentation," LNCS, Vol. 2879, pp. 730-737, 2003.
  11. 이승현, 김대회, 최재영, 노용만, "CAD를 활용한 유방 종괴 검출에서 false positive 감소를 위한 특징정보 융합에 관한 연구," 한국멀티미디어학회 추계학술대회 논문집, 제14권, 제2호, pp. 207-210, 2011.
  12. J.Y. Choi, D.H. Kim, and Y.M. Ro, "Combining Multiresolution Local Binary Pattern Texture Analysis and Variable Selection Strategy Applied to Computer-Aided Detection of Breast Masses on Mammograms," IEEE-EMBS Int'l Conf. on Biomedical and Health Informatics, pp. 496-498, 2012.
  13. H.D. Cheng, X.J. Shi, R. Min, L.M. Hu, X.P. Cai and H.N. Du, "Approaches for Automated Detection and Classification of Masses in Mammograms," Pattern Recognition, Vol. 39, No. 4, pp. 646-668, 2006. https://doi.org/10.1016/j.patcog.2005.07.006
  14. R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, John Wiley, New York, 2000.
  15. M. Yang and L. Zhang, "Gabor Feature based Sparse Representation for Face Recognition with Gabor Occlusion Dictionary," LNCS, Vol. 6316, pp. 448-461, 2010.
  16. T. Joachims, "Text Categorization with Support Vector Machines: Learning with Many Relevant Features," LNCS, Vol. 1398, pp. 137-142, 1998.
  17. R. Kohavi, "A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection," Int'l J oint Conf. on Artificial Intelligence, pp. 1137-1143, 1995.
  18. C.W. Hsu, C.C. Chang, and C.J. Lin, A Practical Guide to Support Vector Classification, Technical Report of University of National Taiwan, 2003.