DOI QR코드

DOI QR Code

돼지의 경골에 식립된 지르코니아 임플란트의 골유착에 관한 연구

Osseointegration of zirconia implant in the tibia of pigs

  • 김이경 (단국대학교 치과대학 치과보철학교실) ;
  • 조인호 (단국대학교 치과대학 치과보철학교실)
  • Kim, Lee-Kyoung (Department of Prosthodontics, School of Dentistry, Dankook University) ;
  • Cho, In-Ho (Department of Prosthodontics, School of Dentistry, Dankook University)
  • 투고 : 2013.06.18
  • 심사 : 2013.07.12
  • 발행 : 2013.07.31

초록

연구 목적: 최근 지르코니아 임플란트가 크게 향상된 물리적 성질, 자연치와 유사한 색조, 뛰어난 생체 적합성으로 주목 받고 있다. 이에 본 연구에서는 국내에서 시판되고 있는 상용 타이타늄 임플란트와 개발 단계인 지르코니아 임플란트의 골유착을 비교 연구하였다. 연구 재료 및 방법: 상용 타이타늄 임플란트(T 군)와 기계 절삭된 나사형 지르코니아 임플란트(Z 군), 기계 절삭 후 알루미나 샌드 블라스팅으로 표면 처리된 나사형 지르코니아 임플란트(ZS 군)의 표면 거칠기를 측정한 후 6마리 돼지의 좌, 우측 하지 경골에 식립하여 1주, 4주, 12주에 각각 희생하여 Periotest values (PTVs) 측정, 조직학적 측정 및 조직 계측학적 측정, 주사 전자 현미경 관찰을 시행하였다. 평균 표면 거칠기와 PTVs, 조직계측학적 측정 결과는 일원분산분석을 통해 통계 처리되었다(${\alpha}=.05$). 결과:각 군 임플란트의 표면 거칠기를 측정한 결과 T 군이 Z 군, ZS 군에 비해 더 유의하게 높은 평균 표면 거칠기 값을 보였다. PTVs는 측정 시기 모두에서 T 군이 상대적으로 낮은 값을 보였으나 각 군에 따라, 시기에 따라 모두 통계적으로 유의하지는 않았다. 식립 1주차 골접촉율 측정 결과 Z 군이 T 군, ZS 군에 비해 유의성 있게 높았고, 골면적율은 T 군, Z 군이 ZS 군에 비해 유의성 있게 높았다. 식립 4주차 골접촉율 측정에서 T 군이 Z 군, ZS 군에 비해 유의성 있게 높았고, 골면적율은 군간 유의한 차가 없었다. 식립 12주차 골접촉율은 T 군, ZS 군, Z 군 순으로 낮아졌고 모든 군간 통계적으로 유의한 차이가 존재하였다. 골면적율은 T 군, ZS 군이 Z 군에 비해 유의성 있게 높았다. 결론: 이상의 결과는 지르코니아 임플란트의 골유착이 타이타늄 임플란트에 비해 부족하며, 상용화를 위해서는 지르코니아 임플란트의 표면 변형에 관한 연구가 더 필요함을 시사한다.

Purpose: The purposes of this study were to investigate osseointegration around zirconia implants which had machined or alumina sandblasted surface, and to compare the results with titanium implants. Materials and methods: The study was performed on the tibia of 6 pigs. Three types of implants were investigated: group T-titanium implant, group Z-machined zirconia implant, group ZS-alumina sandblasting treated zirconia implant. Zirconia implants were manufactured from yttria-stabilized tetragonal zirconia polycrystalline (Acucera Inc., Pocheon, Korea). A total of 36 implants were installed in pigs' tibias. After 1, 4 and 12 weeks of healing period, the periotest and the histomorphometric analysis were performed. The data were analyzed using one-way ANOVA and significance was assessed by the Scheffe test (${\alpha}=.05$). Results: In the measurement of surface roughness, highest Ra value was measured in group T with significant difference. No significant differences were found among groups regarding Periotest values. After 1 week, in comparison of bone to implant contact (BIC), group Z showed higher value with significant difference. In comparison of bone area (BA), group T and group Z showed higher value with significant difference than group ZS. After 4 weeks, in comparison of BIC, group T showed higher value with significant difference. Comparison of BA showed no significant difference among each implant. After 12 weeks, the highest mean BIC values were found in group T with significant difference. Group ZS showed higher BIC value with significant difference than group Z. In comparison of BA, group T and group ZS showed higher value with significant difference than group Z. Conclusion: Zirconia implant showed low levels of osseointegration in this experiment. Modification of surface structure should be taken into consideration in designing zirconia implants to improve the success rate.

키워드

참고문헌

  1. Stadlinger B, Hennig M, Eckelt U, Kuhlisch E, Mai R. Comparison of zirconia and titanium implants after a short healing period. A pilot study in minipigs. Int J Oral Maxillofac Surg 2010;39:585-92. https://doi.org/10.1016/j.ijom.2010.01.015
  2. Heydecke G, Kohal R, Gla¨ser R. Optimal esthetics in single-tooth replacement with the Re-Implant system: a case report. Int J Prosthodont 1999;12:184-9.
  3. Stejskal J, Stejskal VD. The role of metals in autoimmunity and the link to neuroendocrinology. Neuro Endocrinol Lett 1999;20: 351-64.
  4. Weingart D, Steinemann S, Schilli W, Strub JR, Hellerich U, Assenmacher J, Simpson J. Titanium deposition in regional lymph nodes after insertion of titanium screw implants in maxillofacial region. Int J Oral Maxillofac Surg 1994;23:450-2. https://doi.org/10.1016/S0901-5027(05)80045-1
  5. Akagawa Y, Ichikawa Y, Nikai H, Tsuru H. Interface histology of unloaded and early loaded partially stabilized zirconia endosseous implant in initial bone healing. J Prosthet Dent 1993;69:599-604. https://doi.org/10.1016/0022-3913(93)90289-Z
  6. Hoffmann O, Angelov N, Gallez F, Jung RE, Weber FE. The zirconia implant-bone interface: a preliminary histologic evaluation in rabbits. Int J Oral Maxillofac Implants 2008;23:691-5.
  7. Andreiotelli M, Kohal RJ. Fracture strength of zirconia implants after artificial aging. Clin Implant Dent Relat Res 2009; 11:158-66. https://doi.org/10.1111/j.1708-8208.2008.00105.x
  8. Ichikawa Y, Akagawa Y, Nikai H, Tsuru H. Tissue compatibility and stability of a new zirconia ceramic in vivo. J Prosthet Dent 1992;68:322-6. https://doi.org/10.1016/0022-3913(92)90338-B
  9. Kohal RJ, Weng D, Bachle M, Strub JR. Loaded custom-made zirconia and titanium implants show similar osseointegration: an animal experiment. J Periodontol 2004;75:1262-8. https://doi.org/10.1902/jop.2004.75.9.1262
  10. Nebe B, Forster C, Pommerenke H, Fulda G, Behrend D, Bernewski U, Schmitz KP, Rychly J. Structural alterations of adhesion mediating components in cells cultured on poly-beta-hydroxy butyric acid. Biomaterials 2001;22:2425-34. https://doi.org/10.1016/S0142-9612(00)00430-0
  11. Anselme K, Bigerelle M, Noel B, Dufresne E, Judas D, Iost A, Hardouin P. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res 2000;49:155-66. https://doi.org/10.1002/(SICI)1097-4636(200002)49:2<155::AID-JBM2>3.0.CO;2-J
  12. Lincks J, Boyan BD, Blanchard CR, Lohmann CH, Liu Y, Cochran DL, Dean DD, Schwartz Z. Response of MG63 osteoblastlike cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 1998;19:2219-32. https://doi.org/10.1016/S0142-9612(98)00144-6
  13. Lee JH, Lim HS, Lim JH, Cho IH. The effect of resorbable membrane and xenogenic graft materials on implant stability and peri-implant tissue reaction. J Korean Acad Oral Maxillofac Implants 2001;5:70-95.
  14. Yim JH, Lim HS, Lim JH, Cho IH. The effect of various graft materials on the stability of implant and peri-implant tissue response in rabbit tibia. J Korean Acad Oral Maxillofac Implants 2001;5: 41-64.
  15. Wennerberg A, Albrektsson T. Suggested guidelines for the topographic evaluation of implant surfaces. Int J Oral Maxillofac Implants 2000;15:331-44.
  16. Albrektsson T, Wennerberg A. Oral implant surfaces: Part 1-review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont 2004; 17:536-43.
  17. Kieswetter K, Schwartz Z, Dean DD, Boyan BD. The role of implant surface characteristics in the healing of bone. Crit Rev Oral Biol Med 1996;7:329-45. https://doi.org/10.1177/10454411960070040301
  18. Hempel U, Hefti T, Kalbacova M, Wolf-Brandstetter C, Dieter P, Schlottig F. Response of osteoblast-like SAOS-2 cells to zirconia ceramics with different surface topographies. Clin Oral Implants Res 2010;21:174-81. https://doi.org/10.1111/j.1600-0501.2009.01797.x
  19. Palmieri A, Pezzetti F, Brunelli G, Lo Muzio L, Scarano A, Scapoli L, Martinelli M, Arlotti M, Guerzoni L, Rubini C, Carinci F. Shortperiod effects of zirconia and titanium on osteoblast microRNAs. Clin Implant Dent Relat Res 2008;10:200-5. https://doi.org/10.1111/j.1708-8208.2007.00078.x
  20. Schliephake H, Scharnweber D. Chemical and biological functionalization of titanium for dental implants. J Mater Chem 2008;18:2404-14. https://doi.org/10.1039/b715355b
  21. Roessler S, Zimmermann R, Scharnweber D, Werner C, Worch H. Characterization of oxide layers on Ti6Al4V and titanium by streaming potential and streaming current measurements. Colloid Surf B: Biointerfaces 2002;26:387-95. https://doi.org/10.1016/S0927-7765(02)00025-5
  22. Leong YK, Scales PJ, Healy TW, Boger DV. Effect of particle size on colloidal zirconia rheology at the isoelectric point. J Am Ceram Soc 1995;78:2209-12. https://doi.org/10.1111/j.1151-2916.1995.tb08638.x
  23. Shin D, Blanchard SB, Ito M, Chu TM. Peripheral quantitative computer tomographic, histomorphometric, and removal torque analyses of two different non-coated implants in a rabbit model. Clin Oral Implants Res 2011;22:242-50. https://doi.org/10.1111/j.1600-0501.2010.01980.x
  24. Schliephake H, Hefti T, Schlottig F, Ge′det P, Staedt H. Mechanical anchorage and peri-implant bone formation of surface-modified zirconia in minipigs. J Clin Periodontol 2010;37:818-28. https://doi.org/10.1111/j.1600-051X.2010.01549.x
  25. Langhoff JD, Voelter K, Scharnweber D, Schnabelrauch M, Schlottig F, Hefti T, Kalchofner K, Nuss K, von Rechenberg B. Comparison of chemically and pharmaceutically modified titanium and zirconia implant surfaces in dentistry: a study in sheep. Int J Oral Maxillofac Surg 2008;37:1125-32. https://doi.org/10.1016/j.ijom.2008.09.008