DOI QR코드

DOI QR Code

Time-domain Geoacoustic Inversion of Short-range Acoustic Data with Fluctuating Arrivals

시변동이 있는 근거리 음향신호의 시간영역 지음향학적 역산

  • 박철수 (한국해양과학기술원 선박해양플랜트연구소) ;
  • 성우제 (서울대학교 조선해양공학과) ;
  • ;
  • Received : 2013.01.23
  • Accepted : 2013.05.21
  • Published : 2013.07.31

Abstract

A set of experiments (Shallow Water 2006, SW06) was carried out in shallow water near the New Jersey shelf break in summer 2006. Significant fluctuations in direct and surface reflected arrivals were observed from the chirp data (1100~2900 Hz) measured on a vertical line array. This paper presents a geoacoustic inverssion technique for short-range acoustic data with fluctuating arrivals and inversion results of experimental data. In order to reduce effects of random sea surface on the inversion, the acoustic energy back-propagated from the array to the source through direct and bottom-reflected paths is defined as the objective function. A multi-step inversion scheme is applied to the data using VFSR (Very Fast Simulated Reannealing) optimization technique. The inversion results show a source depth oscillation period equal to the measured ocean surface wave period. The inverted bottom sound speed is 1645 m/s and is similar to that estimated by other work at the same site.

2006년 여름 New Jersey 대륙붕 근해에서 일련의 해상실험(Shallow Water 2006, SW06)이 수행되었다. 이 때 수직선배열에서 계측된 근거리 chirp 신호(1100~2900 Hz)에서 직접도달파와 해수면 반사파의 강한 시변동이 관찰되었다. 본 논문은 시변동성이 있는 근거리 음향신호의 지음향학적 역산기법과 실험 데이터에 대한 역산결과를 제시한다. 불규칙한 해수면 반사파가 역산에 미치는 영향을 최소화하기 위해 수직선배열에서 음원의 위치로 직접도달 경로와 해저면 반사경로를 통해 역전파된 신호의 에너지로써 목적함수를 정의하였다. 또한 VFSR(Very Fast Simulated Reannealing) 최적화기법을 활용한 다단계 역산기법을 실험데이터에 적용하였다. 역산 결과 음원은 주기적인 수직운동을 한 것으로 파악되었고 그 주기는 수면파의 주기와 일치하였다. 해저면의 음속은 1645 m/s로 추정되었고 이는 동일 해역의 다른 연구결과와 유사한 것으로 파악되었다.

Keywords

References

  1. K. Kim, W. Seong, C. Park, and S. Kim, "Geoacoustic inversion via transmission loss matching and matched field processing" (in Korean), J. Acoust. Soc. Kr. 24, 325-333 (2005).
  2. C. F. Mecklenbräuker and P. Gerstoft, "Objective functions for ocean acoustic inversion derived by likelihood methods," J. Comput. Acoust. 48,259-270(2000).
  3. J-P. Hermand and P. Gerstoft, "Inversion of broadband multitonal acoustic data from the yellow shark summer experiments," IEEE J. Oceanic Eng. 21,324-346(1996). https://doi.org/10.1109/48.544044
  4. R. M. Dizaji, N. R. Chapman, and R. L. Kirlin "A phase regulated back wave propagation technique for geoacoustic inversion," J. Acoust. Soc. Am. 111, 800-808 (2002). https://doi.org/10.1121/1.1430691
  5. K. Kim, W. Seong, C. Park, and S. Kim, "Time-domain geoacoustic inversion via light bulb source signal matching" (in Korean), J. Acoust. Soc. Kr. 24, 334-342 (2005).
  6. J-P. Hermand, "Broad-band geoacoustic inversion in shallow water from waveguide impulse response measurements on a single hydrophone: theory and experimental results," IEEE J. Oceanic Eng. 24,41-66(1999). https://doi.org/10.1109/48.740155
  7. L. Jaschke and N. R. Chapman, "Matched field inversion of broadband data using the freeze bath method," J. Acoust. Soc. Am. 106, 1838-1851 (1999). https://doi.org/10.1121/1.427934
  8. Z-H. Michalopoulou, "Matched-impulse-response processing for shallow-water localization and geoacoustic inversion," J. Acoust. Soc. Am. 108, 2082-2090(2000). https://doi.org/10.1121/1.1289669
  9. P. Pignot and N. R. Chapman, "Tomographic inversion of geoacoustic properties in a range-dependent shallow-water environment," J. Acoust. Soc. Am. 110,1338-1348(2001). https://doi.org/10.1121/1.1388000
  10. C. Park, W. Seong, P. Gerstoft, and M. Siderius, "Time domain geoacoustic inversion of high-frequency chirp signal from a simple towed system," IEEE J. Oceanic Eng. 28, 468-478 (2003). https://doi.org/10.1109/JOE.2003.816684
  11. C. Park, W. Seong, and P. Gerstoft, "Geoacoustic inversion in time domain using ship of opportunity noise recorded on a horizontal towed array," J. Acoust. Soc. Am. 117, 1933-1941 (2005). https://doi.org/10.1121/1.1862574
  12. Y-M. Jiang, N. R. Chapman, and P. Gerstoft, "Short range geoacoustic inversion with vertical line array," J. Acoust. Soc. Am. 124, EL135 - EL140 (2008). https://doi.org/10.1121/1.2963093
  13. C. Park, W. Seong, P. Gerstoft and W. S. Hodgkiss, "Geoacoustic inversion using back-propagation," IEEE J. Oceanic Eng. 35, 722-731( 2010). https://doi.org/10.1109/JOE.2010.2040659
  14. Y-M. Jiang and N. R. Chapman, "Estimating geoacoustic properties of marine sediment on the New Jersey continental shelf from broadband signals," J. Acoust. Soc. Am. 126, 2316 (2009).
  15. D. J. Tang, J. Moum, J. Lynch, P. Abbot, R. Chapman, P. Dahl, T. Duda, G. Gawarkiewicz, S. Glenn, J. Goff, H. Graber, J. Kemp, A. Maffei, J. Nash, and A. Newhall, "Shallow Water '06 - a joint acoustic propagation / nonlinear internal wave physics experiment," Oceanogr. 20, 156-167 (2007). https://doi.org/10.5670/oceanog.2007.16
  16. C. Park, W. Seong, P. Gerstoft and, W. S. Hodgkiss, "Fluctuating arrivals of short-range acoustic data," J. Acoust. Soc. Am. 129, 98-103 (2011). https://doi.org/10.1121/1.3514505
  17. D. P. Knobles, P. S. Wilson, J. A. Goff, and S. E. Cho, "Seabed acoustics of a sand ridge on the New Jersey continental shelf," J. Acoust. Soc. Am. 124, EL151 - EL156 (2008). https://doi.org/10.1121/1.2932348
  18. T. A. Davies, J. A. Austin, Jr., M. B. Lagoe, and J. D. Milliman, "Late Quaternary sedimentation off New Jersey: New results using 3-D seismic profiles and cores," Marine Geology 108, 322-343 (1992).
  19. F. D. Tappert, "The parabolic approximation method," in Wave Propagation in Underwater Acoustics, edited by J. B. Keller and J. S. Papadakis (Springer-Verlag, New York, 1977).
  20. C. T. Tindle and G. B. Deane, "Shallow water sound propagation with surface waves," J. Acoust. Soc. Am. 117, 2783-2794 (2005). https://doi.org/10.1121/1.1883368
  21. C. Park, Y. Cho, J. Ahn, and W. Seong, "A study on the ray based broad band modeling for shallow water acoustic wave propagations" (in Korean), J. Acoust. Soc. Kr. 25, 298-304 (2005).
  22. P. Ratilal, P. Gerstoft, and J. T. Goh, "Subspace approach to inversion by genetic algorithms involving multiple frequencies," J. Comp. Acoust. 6, 99-115 (1998). https://doi.org/10.1142/S0218396X98000090
  23. L. Ingber, "Very fast simulated reannealing," Math. Comput. Modeling 12, 967-993 (1989). https://doi.org/10.1016/0895-7177(89)90202-1
  24. M. K. Sen and P. L. Stoffa, Global optimization methods in geophysical inversion (Elsevier, Amsterdam, The Netherlands, 1995).