DOI QR코드

DOI QR Code

정수처리에서 미량유해물질 제거를 위한 Peroxone 공정의 적용성 및 경제성 평가

Evaluation of Applicability and Economical Efficiency of Peroxone Process for Removal of Micropollutants in Drinking Water Treatment

  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 김상구 (부산광역시 상수도사업본부 수질연구소) ;
  • 염훈식 (부산광역시 상수도사업본부 수질연구소) ;
  • 최진택 (부산광역시 상수도사업본부 수질연구소)
  • 투고 : 20130231
  • 심사 : 2013.04.04
  • 발행 : 2013.07.31

초록

We compared the applicability and economical efficiency of peroxone process with those of ozone process in the existing water treatment plant on downstream of Nakdong River. After comparing the peroxone process for removing geosmin with the ozone process in lab scale test, peroxone process showed much higher removal efficiency than the ozone process at the same ozone dosage. Proper range of $H_2O_2/O_3$ ratio were 0.5~1.0 and the half-life of geosmin was about 5.5~6.8 min when the $H_2O_2/O_3$ ratio was set to 0.5 during 1~2 mg/L of ozone dosage. Peroxone process could reduce the ozone dosage about 50 to maximum 30% for the same geosmin removal efficiency compared to the ozone process in the pilot scale test. In case of 1,4-dioxane treatment, peroxone process could have 3~4 times higher efficiency than ozone process at the same ozone dosage. The results of estimating the economical efficiency of ozone and peroxone process for treating geosmin and 1,4-dioxane by using pilot scale test, in case of the removal target was set to 85% for these two materials, the cost of peroxane process could be reduced about 1.5 times compared to ozone process, and in the same production cost peroxone process could have 2~3 times higher removal efficiency than ozone process. The removal efficiency by peroxone process showed a large difference depending on the physicochemical characteristics of target materials and raw water, therefore detailed examination should be carried out before appling peroxone process.

키워드

참고문헌

  1. Aieta, E. M., Reagan, K. M., Lang, J. S., McReynolds, L., Kang, J. W., Glaze, W. H., 1988, Advanced oxidation processes for treating groundwater contaminated with TCE and PCE: pilot-scale evaluations, J. AWWA, 80(5), 64-72. https://doi.org/10.1002/j.1551-8833.1988.tb03039.x
  2. Bandala, E. R., Pelaez, M. A., Garcia-Lopez, J., Salgado, M. J., and Moeller, G., 2008, Photocatalytic decolourisation of synthetic and real textile wastewater containing benzidine-based azo dyes, Chem Eng. Processing, 47, 169-176. https://doi.org/10.1016/j.cep.2007.02.010
  3. Brunet, R., Bourbigot, M. M., Dore, M., 1984, Oxidation of organic compounds through the combination ozone-hydrogen peroxide, Ozone Sci. Eng., 6, 163. https://doi.org/10.1080/01919518408551019
  4. Dodd, M C., Huang, C. H., 2004, Transformation of the antibacterial agent sulfamethoxazole in reactions with chlorine: kinetics, mechani는 and pathways, Environ. Sci. Technol., 38, 5607-5615. https://doi.org/10.1021/es035225z
  5. Duguet, J. P., Brodard, E., Dussert, B., Mallevialle, J., 1985, Improvement in the effectiveness of ozonation of drinking water through the use of hydrogen peroxide, Ozone Sci. Eng., 7, 241-258. https://doi.org/10.1080/01919518508552366
  6. Esplugas, S., Bila, D. M., Krause, L. G. T., Dezotti, M., 2007, Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents, J. Hazard. Mater., 149, 631-642. https://doi.org/10.1016/j.jhazmat.2007.07.073
  7. Ferguson, D. W., McGuire, M. J., Koch, B., Wolfe, R. L., Aieta, E. M., 1990, Comparing peroxone and ozone for controlling taste and odor compounds, disinfection by-products, and microorganisms, J. AWWA, 82(4), 181-191. https://doi.org/10.1002/j.1551-8833.1990.tb06950.x
  8. Glaze, W. H., Kang, J. W., Chapin, D. H., 1987, The chemistry of water treatment processes involving ozone. hydrogen peroxide and ultraviolet radiation, Ozone Sci. Eng., 9(4), 335-352. https://doi.org/10.1080/01919518708552148
  9. Glaze, W. H. and Kang, J. W., 1988, Advanced oxidation processes for treating groundwater contaminated with TCE and PCE: laboratory studies, J. AWWA, 80(5), 57-63.
  10. Klavarioti, M., Mantzavinos, D., Kassinos, D., 2009, Removal of residual pharmaceuticals from aqueous system by advanced oxidation processes, Environ. Int., 35, 402-417. https://doi.org/10.1016/j.envint.2008.07.009
  11. Lee, H. J., Gang, L. S., 2009, Analysis of geosmin and 2-MIB in water by stir bar sorptive extraction (SBSE) and GC/MS, J. of KSEE, 31(1), 64-69.
  12. Lin, A. Y. C., Yu, T. H., Lin, C. F., 2008, Pharmaceutical contamination in residual, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan, Chemosphere, 74, 131-141. https://doi.org/10.1016/j.chemosphere.2008.08.027
  13. Marhaba, T. F., Bengraine, K., 2003, Review of strategies for minimizing bromate formation resulting from drinking water ozonation, Clean Technol. Environ. Policy, 5, 101-112. https://doi.org/10.1007/s10098-002-0177-4
  14. Nakayama, S., Esaki, K., Namba, K., Taniguchi, N., Tabata, N., 1979, Improved ozonation in aqueous systems, Ozone Sci. Eng., 1, 119. https://doi.org/10.1080/01919517908550839
  15. Petrovic, M., Gonzalez, S., Barcelo, D., 2003, Analysis and removal of emerging contaminants in wastewater and drinking water, Trends Anal. Chem., 22(10), 685-696. https://doi.org/10.1016/S0165-9936(03)01105-1
  16. Pisarenko, A. N., Stanford, B. D., Yan, D., Gerrity, D., Snyder, S. A., 2012, Effects of ozone and ozone/ peroxide on trace organic contaminants and NDMA in drinking water and water reuse applications, Water Res., 46, 316-326. https://doi.org/10.1016/j.watres.2011.10.021
  17. Roche, P., Volk, C., Carbonnier, F., Paillard, H., 1994, Water oxidation by ozone/hydrogen peroxide using the 'Ozotest' or 'Peroxotest' methods, Ozone Sci. Eng., 16(2) 135-155. https://doi.org/10.1080/01919519408552418
  18. Son, H. J., Choi, Y. I., Bae, S. D., Jung, C. W., 2006a, Removal of 1,4-dioxane in ozone and activated carbon process, J. of KSEE, 28(12), 1280-1286.
  19. Son, H. S., Choi, S. B., Khan, E., and Zoh, K. D., 2006b, Removal of 1,4-dioxane from water using sonication: effect of adding oxidants on the degradation kinetics, Water Res., 40, 692-698. https://doi.org/10.1016/j.watres.2005.11.046
  20. Son, H. J., Yeom, H. S., Bin, J. H., 2010, Peroxone ($O_{3}/H_{2}O_{2}$) process in drinking water treatment, J. of KSEE, 32(3), 296-308.
  21. Staehelin, J., Hoigne, J., 1982, Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide, Environ. Sci. Technol., 16, 676-681. https://doi.org/10.1021/es00104a009
  22. Suh, J. H. and Mohseni, M., 2004, A study on the relationship between biodegradability enhancement and oxidation of 1,4-dioxane using ozone and hydrogen peroxide, Water Res, 38, 2596-2604. https://doi.org/10.1016/j.watres.2004.03.002

피인용 문헌

  1. /BAC Process vol.35, pp.12, 2013, https://doi.org/10.4491/KSEE.2013.35.12.889