DOI QR코드

DOI QR Code

Biodiesel Production from Waste Oils Mixed with Animal Tallows and Vegetable Oil by Transesterification Using Ultrasonic Irradiation

초음파를 이용한 동식물성 혼합 폐유지로부터 바이오디젤 제조

  • Received : 2013.02.26
  • Accepted : 2013.05.14
  • Published : 2013.08.01

Abstract

Transesterifications of waste oils mixed with animal tallows and vegetable oil by ultrasonic energy were examined over various catalysts for biodiesel production. Reaction activities of the transesterification were evaluated to the ultrasonic energy and thermal energy. The physicochemical properties of feedstock and products were also investigated to the biodiesels produced from the oils in the reaction using ultrasonic energy. The highest fatty acid methyl ester (FAME) yield was obtained on the potassium hydroxide catalyst in the transesterification by ultrasonic irradiation. The effective reaction conditions by ultrasonic energy were 0.5 wt% catalyst loading and 6:1 molar ratio of methanol to the mixed oils. The reaction rate of the transesterification by ultrasonic energy was faster than that by thermal energy. The highest yields of FAME were obtained as 80% in 5 min and the reaction equilibrium reached at that time.

초음파를 에너지원으로 하는 에스테르 교환 반응에 의해 오리기름과 쇠기름 등 동물성 폐유지와 대두유를 혼합한 동식물성 폐유지로부터 바이오디젤을 제조하였다. 초음파를 이용한 동식물성 유지의 에스테르 교환 반응 특성과 생성된 바이오디젤의 물리화학적 특성을 조사하였다. 또한, 초음파와 열에너지에 의한 에스테르 교환 반응의 반응특성도 비교하였다. 초음파를 이용한 에스테르 교환 반응에 의한 바이오디젤 수율은 균일계 알칼리 촉매인 수산화칼륨 촉매에서 높았다. 초음파를 이용한 동식물성 혼합 폐유지의 에스테르 교환 반응에서 수산화칼륨 촉매를 식물성 유지에 대해 무게비로 0.5% 사용하고, 혼합 폐유지에 대한 메탄올의 몰 비가 6일 때 지방산 메틸에스테르의 수율이 가장 높았다. 초음파를 에스테르 교환 반응의 에너지원으로 사용하면 반응시간 5분 만에 최고 수율과 평형에 도달하였다.

Keywords

References

  1. Marchetti, J. M., Miguel, V. U. and Errazu, A. F., "Possible Methods for Biodiesel Production," Renew. Sust. Energ. Rev., 11, 1300-1311(2007). https://doi.org/10.1016/j.rser.2005.08.006
  2. Lee, J.-S. and Park, S.-C., "Recent Developments and Challenging Issues of Solid Catalysts for Biodiesel Production," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 48, 10-15(2010).
  3. Lee, S. U., Gwon, K. J., Seo, C., Hong, Y. K., Hong, W. H. and Chang, H. N., "Bioprocessing Aspects of Fuels and Chemicals from Biomass," Korean J. Chem. Eng., 29, 831-850(2012). https://doi.org/10.1007/s11814-012-0080-6
  4. Jung, C.-S. and Dong, J.-I., "Oxidation Characteristics of Biodiesel and Its Blend Fuel," J. Korean Ind. Eng. Chem., 18, 284-290(2007).
  5. Yu, M. J., Jo, Y.-B., Kim, S.-G., Lim, Y.-K., Jeon, J.-K., Park, S. H., Kim, S.-S. and Park Y.-K., "Synthesis of Biodiesel from an Oil Fraction Separated from Food Waste Leachate," Korean J. Chem. Eng., 28, 2287-2292(2011). https://doi.org/10.1007/s11814-011-0134-1
  6. Saka, S. and Dadan, K., "Biodiesel Fuel from Rapeseed Oil as Prepared in Supercritical Methanol," Fuel, 80, 225-231(2001). https://doi.org/10.1016/S0016-2361(00)00083-1
  7. Kusdiana, D. and Saka, S., "Kinetics of Transesterification in Rapeseed Oil to Biodiesel Fuel as Treated in Supercritical Methanol," Fuel, 80, 693-698(2001). https://doi.org/10.1016/S0016-2361(00)00140-X
  8. Kusdiana, D. and Saka, S., "Effects of Water on Biodiesel Fuel Production by Supercritical Methanol Treatment," Bioresour. Technol., 91, 289-295(2004). https://doi.org/10.1016/S0960-8524(03)00201-3
  9. Min, E.-J. and Lee, E.-S., "Energy Consumption of Biodiesel Production Process by Supercritical and Immobilized Lipase Method," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 50, 257-263(2012). https://doi.org/10.9713/kcer.2012.50.2.257
  10. Chung, K.-H. and Park, B.-G., "Biodiesel Production from Vegetable Oils by Transesterification Using Ultrasonic Irradiation," Appl. Chem. Eng., 21, 385-390(2010).
  11. Cho, H.-J., Lee, S.-B. and Lee, J.-D., "Production of Lard Based Biodiesel Using Ultrasound Assisted Transesterification," Appl. Chem. Eng., 22, 155-160(2011).
  12. Thanh, L. T., Okitsu, K., Sadanaga, Y., Takenaka, N., Maeda, Y. and Bandow, H., "Ultrasound-assisted Production of Biodiesel Fuel from Vegetable Oils in a Small Scale Circulation Process," Bioresour. Technol., 101, 639-645(2010). https://doi.org/10.1016/j.biortech.2009.08.050
  13. Stavarache, C., Vinatoru, M., Maeda, Y. and Bandow, H., "Ultrasonically Driven Continuous Process for Vegetable Oil Transesterification," Ultrason. Sonochem., 14, 413-417(2006).
  14. Georgogianni, K. G., Katsoulidis, A. K., Pomonis, P. J., Manos, G. and Kontonminas, M. G., "Transesterification of Rapeseed Oil for the Production of Biodiesel Using Homogeneous and Heterogeneous Catalysis, " Fuel Process. Technol., 90, 1016-1022 (2009). https://doi.org/10.1016/j.fuproc.2009.03.002
  15. Santos, F. F. P., Malverira, J. Q., Cruz, M. G. A. and Fernandes, F. A. N., "Production of Biodiesel by Ultrasound Assisted Esterification of Oreochromis Niloticus Oil," Fuel, 89, 275-279(2010). https://doi.org/10.1016/j.fuel.2009.05.030
  16. Teixeira, L. S. G., Assis, J. C. R., Mendonca, D. R., Santos, I. T. V., Guimaraes, P. R. B., Pontes, L. A. M. and Teixeira, J. S. R., "Comparison Between Conventional and Ultrasonic Preparation of Beef Tallow Biodiesel," Fuel Process. Technol., 90, 1164-1166 (2009). https://doi.org/10.1016/j.fuproc.2009.05.008
  17. van Gerpen, J., Shanks, B., Pruszko, R., Clements, D. and Knothe, G., Biodiesel Analytical Methods, NREL/SR-510-36240(2004).
  18. http://www.astm.org/Standard/index.shtml.
  19. Chung, K.-H., Kim, J. and Lee, K.-Y., "Biodiesel Production by Transesterification of Duck Tallow with Methanol on Alkali Catalyst," Biomass Bioenergy., 33, 155-158(2009). https://doi.org/10.1016/j.biombioe.2008.04.014