DOI QR코드

DOI QR Code

Extraction of Intracellular Lipids from Recombinant E. coli for Improving Long-chain Fatty Acid Production

긴 사슬 지방산 생산을 위해 재조합된 E. coli로부터의 세포 내 지질 추출

  • Ham, Su Mi (Department of Chemical and Biological Engineering, Gachon University) ;
  • Yoo, In Sang (Department of Chemical and Biological Engineering, Gachon University) ;
  • Park, Sang Joon (Department of Chemical and Biological Engineering, Gachon University) ;
  • Kim, Ji Hyeon (Department of Chemical and Biological Engineering, Gachon University)
  • 함수미 (가천대학교 화공생명공학과) ;
  • 유인상 (가천대학교 화공생명공학과) ;
  • 박상준 (가천대학교 화공생명공학과) ;
  • 김지현 (가천대학교 화공생명공학과)
  • Received : 2013.06.04
  • Accepted : 2013.07.08
  • Published : 2013.08.01

Abstract

Recently, biohydrocarbons are gathering an interest as a new bioenergy due to the versatile applicability. In the present work, a process is proposed for the recovery of lipids from Recombinant E. coli MG1655 which provides longer chain fatty acids. After the growth of the recombinant E. coli, the cells were disrupted by high pressure homogenizer for obtaining intracellular lipids and the resulting solutions were centrifuged and extracted. For the efficient cell disruption with high pressure homogenizer, the pressure higher than 5,000 psi was required. In addition, under the conditions of applied pressure 5,000 to 20,000 psi, 1~3 pass homogenizing was enough for the more than 90% cell disruption. As organic solvents for extraction of lipid, hexane/isopropyl alcohol and ethyl acetate/ethanol systems showed excellent extracting power. With these solvent systems, the 60% lipid could be recovered. Moreover it was found that the extracted lipids contained long-chain fatty acids such as $C_{12}$, $C_{14}$, $C_{16}$ and $C_{18}$.

바이오알콜이 아닌 탄화수소계 바이오연료를 생산하기 위한 발효 공정에 대한 연구가 주목을 받고 있다. 본 연구에서는 야생 균주에 비해 긴 사슬 지방산을 과량 생산하는 재조합 E. coli MG1655를 배양한 후 세포 내 지질을 효과적으로 분리하기 위한 연구를 수행하였다. 고압 균질기를 이용하여 세포를 파쇄한 후 환경친화적인 용매들을 이용하여 지질을 추출하였다. 세포 파쇄는 고압 균질기의 압력이 5,000 psi 보다 큰 압력 하에서 효과적으로 이루어졌으며 20,000 psi 까지의 압력 범위에서는 1~3회 파쇄로 모두 90% 이상의 파쇄율을 얻었다. 추출 용매 시스템의 경우 hexane/isopropyl alcohol과 ethyl acetate/ethanol 시스템이 상대적으로 높은 지질 회수율을 나타내었고 상기 세포 파쇄 조건을 적용하여 초기 지질량의 약 60%를 추출하였다. 또한 추출된 지질은 $C_{12}$, $C_{14}$, $C_{16}$$C_{18}$과 같이 긴사슬 지방산으로 구성되었음을 확인하였다.

Keywords

References

  1. Nguyen, T., Do, L. and Sabatini, D., "Biodiesel Production via Peanut Oil Extraction using Diesel-Based Reverse-Micellar Microemulsions," Fuel, 89, 2285-2291(2010). https://doi.org/10.1016/j.fuel.2010.03.021
  2. Huffer, S., Roche. C. M., Blanch, H. W. and Clark, D. S., "Escherichia coli for Biofuel Production: Bridging the Gap from Promise to Practice," Trends Biotechnol, 30, 538-545(2012). https://doi.org/10.1016/j.tibtech.2012.07.002
  3. Magnuson, K., Jackowski, S., Rock, C. O. and Cronan Jr., J. E., "Regulation of Fatty Acid Biosynthesis in Escherichia coli," Microbiol. Mol Biol. Rev., 57, 522-542(1993).
  4. Atsumi, S., Hanai, T. and Liao, J. C., "Non-fermentative Pathways for Synthesis of Branched-Chain higher Alcohols as Biofuels," Nature, 451, 86-89(2008). https://doi.org/10.1038/nature06450
  5. Shiba, Y., Paradise, E. M., Kirby, J., Ro, D. and Keasling, J., "Engineering of the Pyruvate Dehydrogenase Bypass in Saccharomyces Cerevisiae for High-Level Production of Isoprenoids," Metab. Eng., 9, 160-168(2007). https://doi.org/10.1016/j.ymben.2006.10.005
  6. Kalscheuer, R., Stölting, T. and Steinbuchel, A., "Microdiesel: Escherichia coli Engineered for Fuel Production," Microbiology, 152, 2529-2536(2010).
  7. Park, M. O., Tanabe, M., Hirata, K. and Miyamoto, K. Appl., "Isolation and Characterization of a Bacterium that Produces Hydrocarbons Extracellularly which are Equivalent to Light Oil," Microbiol. Biotechnol., 56, 448-52(2001). https://doi.org/10.1007/s002530100683
  8. Jeon, E., Lee, S., Won, J. I., Han, S. O., Kim, J. and Lee, J., "Development of Escherichia coli MG1655 Strains to Produce Long Chain Fatty Acids by Engineering Fatty Acid Synthesis (FAS) Metabolism," Enzyme Microb. Technol., 49, 44-51(2011). https://doi.org/10.1016/j.enzmictec.2011.04.001
  9. Ho, C. W., Chew, T. K., Ling, T. C., Kamaruddin, S., Tan, W. S. and Tey, B., "Efficient Mechanical Cell Disruption of Escherichia coli by an Ultrasonicator and Recovery of Intracellular Hepatitis B Core Antigen," Process Biochem., 41, 1829-1834(2006). https://doi.org/10.1016/j.procbio.2006.03.043
  10. Siddiqi, S. F., Titchener-Hooker, N. J. and Shamlou, P. A., "High Pressure Disruption of Yeast Cells: The Use of Scale Down Operations for the Prediction of Protein Release and Cell Debris Size Distribution," Biotechnol. Bioeng., 55, 642-649(1997). https://doi.org/10.1002/(SICI)1097-0290(19970820)55:4<642::AID-BIT6>3.0.CO;2-H
  11. Bligh, E. G. and Dyer, W. J., "A Rapid Method for Total Lipid Extraction and Purification," Can. J. Biochem. Physiol, 37, 911- 917(1959). https://doi.org/10.1139/o59-099
  12. Hara, A. and Radin, N. S., "Lipid Extraction of Tissues with a Low-Toxicity Solvent," Anal. Biochem., 90, 420-426(1978). https://doi.org/10.1016/0003-2697(78)90046-5
  13. Bas, P., Archimède, H., Rouzeau, A. and Sauvant, D., "Fatty Acid Composition of Mixed-Rumen Bacteria: Effect of Concentration and Type of Forage," J. Dairy Sci., 86, 2940-2948(2003). https://doi.org/10.3168/jds.S0022-0302(03)73891-0
  14. Lalman, J. A. and Bagley, D. M., "Extracting Long-chain Fatty acids from a Fermentation Medium," J. Am. Oil Chem. Soc., 81, 105-110(2004). https://doi.org/10.1007/s11746-004-0866-y
  15. Matyash, V., Liebisch, G., Kurzchalia, T., Shevchenko, A. and Schwudke, D., "Lipid Extraction by Methyl-tert-butyl Ether for High-throughput Lipidomics," J. Lipid Res., 49, 1137-1146(2008). https://doi.org/10.1194/jlr.D700041-JLR200
  16. Lin, J., Liu, D., Yang, M. and Lee, M., "Ethyl Acetate/Ethyl Alcohol Mixtures as an Alternative to Folch Reagent for Extracting Animal Lipids," J. Agri. Food Chem., 52, 4984-4986(2004). https://doi.org/10.1021/jf049360m

Cited by

  1. 인지질분해효소D에 의해 유도된 소낭 융합에 대한 상 비대칭의 영향 vol.53, pp.6, 2015, https://doi.org/10.9713/kcer.2015.53.6.672