DOI QR코드

DOI QR Code

Quantum Chemical Designing of Efficient Sensitizers for Dye Sensitized Solar Cells

  • Received : 2013.03.08
  • Accepted : 2013.04.20
  • Published : 2013.07.20

Abstract

Density functional theory (DFT) was used to determine the ground state geometries of indigo and new design dyes (IM-Dye-1 IM-Dye-2 and IM-Dye-3). The time dependant density functional theory (TDDFT) was used to calculate the excitation energies. All the calculations were performed in both gas and solvent phase. The LUMO energies of all the dyes were above the conduction band of $TiO_2$, while the HOMOs were below the redox couple (except IM-Dye-3). The HOMO-LUMO energy gaps of new design dyes were smaller as compared to indigo. All new design dyes were strongly red shifted as compared to indigo. The improved light harvesting efficiency (LHE) and free energy change of electron injection ${\Delta}G^{inject}$ of new designed sensitizers revealed that these materials would be excellent sensitizers. The broken coplanarity between the benzene near anchoring group having LUMO and the last benzene attached to TPA unit in all new design dyes consequently would hamper the recombination reaction. This theoretical designing will the pave way for experimentalists to synthesize the efficient sensitizers for solar cells.

Keywords

References

  1. Regan, B. O.; Gratzel, M. Nature 1991, 353, 737-740. https://doi.org/10.1038/353737a0
  2. Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835-16847. https://doi.org/10.1021/ja052467l
  3. Zhang, Q. F.; Dandeneau, C. S.; Zhou, X. Y.; Cao, G. Z. Adv Mater 2009, 21, 4087-4108. https://doi.org/10.1002/adma.200803827
  4. Li, G.; Jiang, K. J.; Li, Y. F.; Li, S. L.; Yang, L. M. J Phys Chem C 2008, 112, 11591-11599. https://doi.org/10.1021/jp802436v
  5. Wong, B. M.; Codaro, J. G. J. Chem. Phys. 2008, 129, 214703- 214710. https://doi.org/10.1063/1.3025924
  6. Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S. J. Am. Chem. Soc. 2004, 126, 12218-12219. https://doi.org/10.1021/ja0488277
  7. Ferrere, S.; Zaban, A.; Gregg, B. J. Phys. Chem. B 1997, 101, 4490-4493. https://doi.org/10.1021/jp970683d
  8. Robertson, N. Angew. Chem. Int. Ed. 2006, 45, 2338-2345. https://doi.org/10.1002/anie.200503083
  9. Liu, D.; Fessenden, R. W.; Hug, G. L.; Kamat, P. V. J. Phys. Chem. B 1997, 101, 2583-2590. https://doi.org/10.1021/jp962695p
  10. Hagfeldt, A.; Gratzel, M. Acc. Chem. Res. 2000, 33, 269-277. https://doi.org/10.1021/ar980112j
  11. Sayama, K.; Tsukagochi, S.; Hara, K.; Ohga, Y.; Shinpou, A.; Abe, Y.; Suga, S.; Arakawa, H. J. Phys. Chem. B 2002, 106, 1363- 1371 https://doi.org/10.1021/jp0129380
  12. Frisch, M. J. et al. Gaussian 09, Revision A.1. Gaussian Inc, Wallingford, CT, 2009.
  13. Katoh, R.; Furube, A.; Yoshihara, T.; Hara, K.; Fujihashi, G.; Takano, S.; Murata, S.; Arakawa, H.; Tachiya, M. J. Phys. Chem. B 2004, 108, 4818-4822. https://doi.org/10.1021/jp031260g
  14. Nalwa, H. S. Handbook of advanced electronic and photonic materials and devices; Academic: San Diego, 2001.
  15. Wichien, S.; Samarn, S.; Vittaya, A. J. Photochem. Photobiol. A 2012, 236, 35-40. https://doi.org/10.1016/j.jphotochem.2012.03.014
  16. Preat, J.; Michaux, C.; Jacquemin, D.; Perpète, E. A. J. Phys. Chem. C 2009, 113, 16821-16833. https://doi.org/10.1021/jp904946a
  17. Tomkinson John, Bacci Mauro, Picollo Marcello, Colognesi Daniele. Vib. Spectrosc. 2009, 50, 268-276. https://doi.org/10.1016/j.vibspec.2009.01.005
  18. Zollinger, hristie, 2007 Methods of Determining Indigo: Handbook of Natural Colorants Edited by Thomas Bechtold and Rita $Mussak{\copyright}$2009 John Wiley & Sons: Ltd., 2003; p 106-107.

Cited by

  1. Theoretical designing of novel heterocyclic azo dyes for dye sensitized solar cells vol.13, pp.4, 2014, https://doi.org/10.1007/s10825-014-0628-2
  2. Utilization of electron‐deficient thiadiazole derivatives as π-spacer for the red shifting of absorption maxima of diarylamine-fluorene based dyes vol.134, pp.1, 2015, https://doi.org/10.1007/s00214-014-1596-0
  3. Performance Enhancement in Dye-Sensitized Solar Cells with Composite Mixtures of TiO2 Nanoparticles and TiO2 Nanotubes vol.28, pp.3, 2015, https://doi.org/10.1007/s40195-015-0205-0
  4. A cascaded QSAR model for efficient prediction of overall power conversion efficiency of all-organic dye-sensitized solar cells vol.36, pp.14, 2015, https://doi.org/10.1002/jcc.23886
  5. Theoretical study of anthoxanthin dyes for dye sensitized solar cells (DSSCs) vol.15, pp.2, 2016, https://doi.org/10.1007/s10825-016-0791-8
  6. Improvement in charge transfer dynamic of the porphyrin-based solar cells in water: A theoretical study vol.9, pp.2, 2017, https://doi.org/10.1063/1.4977212
  7. The Role of Porphyrin-Free-Base in the Electronic Structures and Related Properties of N-Fused Carbazole-Zinc Porphyrin Dye Sensitizers vol.16, pp.11, 2015, https://doi.org/10.3390/ijms161126057
  8. Designing of Efficient Acceptors for Organic Solar Cells: Molecular Modelling at DFT Level vol.29, pp.2, 2018, https://doi.org/10.1007/s10876-018-1338-x
  9. Molecular design of vinyl-functionalized quercetin dyes with different acceptors for dye-sensitized solar cells: theoretical investigation vol.17, pp.3, 2018, https://doi.org/10.1007/s10825-018-1195-8
  10. DFT Study of Anthocyanidin and Anthocyanin Pigments for Dye Sensitized Solar Cells: Electron Injecting from the Excited States and Adsorption onto TiO2 (Anatase) Surface vol.5, pp.1-2, 2018, https://doi.org/10.1515/ehs-2018-0008
  11. DFT study of anthocyanidin and anthocyanin pigments for Dye-Sensitized Solar Cells: Electron injecting from the excited states and adsorption onto TiO2 (anatase) surface vol.2, pp.6, 2017, https://doi.org/10.1515/psr-2017-0008
  12. DFT study of anthocyanidin and anthocyanin pigments for Dye-Sensitized Solar Cells: Electron injecting from the excited states and adsorption onto TiO2 (anatase) surface vol.2, pp.6, 2017, https://doi.org/10.1515/psr-2017-0008
  13. Computational Investigation on Series of Metal‐Free Sensitizers in Tetrahydroquinoline with Different π‐spacer Groups for DSSCs vol.4, pp.14, 2013, https://doi.org/10.1002/slct.201803961
  14. Heteroaromatic rings as linkers for quercetin-based dye-sensitized solar cell applications: a TDDFT investigation vol.18, pp.4, 2013, https://doi.org/10.1007/s10825-019-01398-0
  15. Exploring the effect of mono- and di-fluorinated triphenylamine-based molecules as electron donors for dye-sensitised solar cells vol.46, pp.1, 2013, https://doi.org/10.1080/08927022.2019.1668561
  16. Effects of electron acceptor groups on triphenylamine-based dyes for dye-sensitized solar cells: Theoretical investigation vol.398, pp.None, 2013, https://doi.org/10.1016/j.jphotochem.2020.112572
  17. Experimental and theoretical analyses on structural (monomer and dimeric form), spectroscopic and electronic properties of an organic semiconductor 2,6-dimethoxyanthracene vol.94, pp.8, 2013, https://doi.org/10.1007/s12648-019-01562-z