References
- Regan, B. O.; Gratzel, M. Nature 1991, 353, 737-740. https://doi.org/10.1038/353737a0
- Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835-16847. https://doi.org/10.1021/ja052467l
- Zhang, Q. F.; Dandeneau, C. S.; Zhou, X. Y.; Cao, G. Z. Adv Mater 2009, 21, 4087-4108. https://doi.org/10.1002/adma.200803827
- Li, G.; Jiang, K. J.; Li, Y. F.; Li, S. L.; Yang, L. M. J Phys Chem C 2008, 112, 11591-11599. https://doi.org/10.1021/jp802436v
- Wong, B. M.; Codaro, J. G. J. Chem. Phys. 2008, 129, 214703- 214710. https://doi.org/10.1063/1.3025924
- Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S. J. Am. Chem. Soc. 2004, 126, 12218-12219. https://doi.org/10.1021/ja0488277
- Ferrere, S.; Zaban, A.; Gregg, B. J. Phys. Chem. B 1997, 101, 4490-4493. https://doi.org/10.1021/jp970683d
- Robertson, N. Angew. Chem. Int. Ed. 2006, 45, 2338-2345. https://doi.org/10.1002/anie.200503083
- Liu, D.; Fessenden, R. W.; Hug, G. L.; Kamat, P. V. J. Phys. Chem. B 1997, 101, 2583-2590. https://doi.org/10.1021/jp962695p
- Hagfeldt, A.; Gratzel, M. Acc. Chem. Res. 2000, 33, 269-277. https://doi.org/10.1021/ar980112j
- Sayama, K.; Tsukagochi, S.; Hara, K.; Ohga, Y.; Shinpou, A.; Abe, Y.; Suga, S.; Arakawa, H. J. Phys. Chem. B 2002, 106, 1363- 1371 https://doi.org/10.1021/jp0129380
- Frisch, M. J. et al. Gaussian 09, Revision A.1. Gaussian Inc, Wallingford, CT, 2009.
- Katoh, R.; Furube, A.; Yoshihara, T.; Hara, K.; Fujihashi, G.; Takano, S.; Murata, S.; Arakawa, H.; Tachiya, M. J. Phys. Chem. B 2004, 108, 4818-4822. https://doi.org/10.1021/jp031260g
- Nalwa, H. S. Handbook of advanced electronic and photonic materials and devices; Academic: San Diego, 2001.
- Wichien, S.; Samarn, S.; Vittaya, A. J. Photochem. Photobiol. A 2012, 236, 35-40. https://doi.org/10.1016/j.jphotochem.2012.03.014
- Preat, J.; Michaux, C.; Jacquemin, D.; Perpète, E. A. J. Phys. Chem. C 2009, 113, 16821-16833. https://doi.org/10.1021/jp904946a
- Tomkinson John, Bacci Mauro, Picollo Marcello, Colognesi Daniele. Vib. Spectrosc. 2009, 50, 268-276. https://doi.org/10.1016/j.vibspec.2009.01.005
-
Zollinger, hristie, 2007 Methods of Determining Indigo: Handbook of Natural Colorants Edited by Thomas Bechtold and Rita
$Mussak{\copyright}$ 2009 John Wiley & Sons: Ltd., 2003; p 106-107.
Cited by
- Theoretical designing of novel heterocyclic azo dyes for dye sensitized solar cells vol.13, pp.4, 2014, https://doi.org/10.1007/s10825-014-0628-2
- Utilization of electron‐deficient thiadiazole derivatives as π-spacer for the red shifting of absorption maxima of diarylamine-fluorene based dyes vol.134, pp.1, 2015, https://doi.org/10.1007/s00214-014-1596-0
- Performance Enhancement in Dye-Sensitized Solar Cells with Composite Mixtures of TiO2 Nanoparticles and TiO2 Nanotubes vol.28, pp.3, 2015, https://doi.org/10.1007/s40195-015-0205-0
- A cascaded QSAR model for efficient prediction of overall power conversion efficiency of all-organic dye-sensitized solar cells vol.36, pp.14, 2015, https://doi.org/10.1002/jcc.23886
- Theoretical study of anthoxanthin dyes for dye sensitized solar cells (DSSCs) vol.15, pp.2, 2016, https://doi.org/10.1007/s10825-016-0791-8
- Improvement in charge transfer dynamic of the porphyrin-based solar cells in water: A theoretical study vol.9, pp.2, 2017, https://doi.org/10.1063/1.4977212
- The Role of Porphyrin-Free-Base in the Electronic Structures and Related Properties of N-Fused Carbazole-Zinc Porphyrin Dye Sensitizers vol.16, pp.11, 2015, https://doi.org/10.3390/ijms161126057
- Designing of Efficient Acceptors for Organic Solar Cells: Molecular Modelling at DFT Level vol.29, pp.2, 2018, https://doi.org/10.1007/s10876-018-1338-x
- Molecular design of vinyl-functionalized quercetin dyes with different acceptors for dye-sensitized solar cells: theoretical investigation vol.17, pp.3, 2018, https://doi.org/10.1007/s10825-018-1195-8
- DFT Study of Anthocyanidin and Anthocyanin Pigments for Dye Sensitized Solar Cells: Electron Injecting from the Excited States and Adsorption onto TiO2 (Anatase) Surface vol.5, pp.1-2, 2018, https://doi.org/10.1515/ehs-2018-0008
- DFT study of anthocyanidin and anthocyanin pigments for Dye-Sensitized Solar Cells: Electron injecting from the excited states and adsorption onto TiO2 (anatase) surface vol.2, pp.6, 2017, https://doi.org/10.1515/psr-2017-0008
- DFT study of anthocyanidin and anthocyanin pigments for Dye-Sensitized Solar Cells: Electron injecting from the excited states and adsorption onto TiO2 (anatase) surface vol.2, pp.6, 2017, https://doi.org/10.1515/psr-2017-0008
- Computational Investigation on Series of Metal‐Free Sensitizers in Tetrahydroquinoline with Different π‐spacer Groups for DSSCs vol.4, pp.14, 2013, https://doi.org/10.1002/slct.201803961
- Heteroaromatic rings as linkers for quercetin-based dye-sensitized solar cell applications: a TDDFT investigation vol.18, pp.4, 2013, https://doi.org/10.1007/s10825-019-01398-0
- Exploring the effect of mono- and di-fluorinated triphenylamine-based molecules as electron donors for dye-sensitised solar cells vol.46, pp.1, 2013, https://doi.org/10.1080/08927022.2019.1668561
- Effects of electron acceptor groups on triphenylamine-based dyes for dye-sensitized solar cells: Theoretical investigation vol.398, pp.None, 2013, https://doi.org/10.1016/j.jphotochem.2020.112572
- Experimental and theoretical analyses on structural (monomer and dimeric form), spectroscopic and electronic properties of an organic semiconductor 2,6-dimethoxyanthracene vol.94, pp.8, 2013, https://doi.org/10.1007/s12648-019-01562-z