DOI QR코드

DOI QR Code

Preparation, Structural Investigation and Thermal Decomposition Behavior of Two High-Nitrogen Energetic Materials: ZTO·2H2O and ZTO(phen)·H2O

  • Ma, Cong (Department of Chemical Engineering, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University) ;
  • Huang, Jie (Department of Chemical Engineering, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University) ;
  • Zhong, Yi Tang (Department of Chemical Engineering, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University) ;
  • Xu, Kang Zhen (Department of Chemical Engineering, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University) ;
  • Song, Ji Rong (Conservation Technology Department, the Palace Museum) ;
  • Zhang, Zhao (Department of Chemical Engineering, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University)
  • Received : 2013.04.01
  • Accepted : 2013.04.16
  • Published : 2013.07.20

Abstract

Two new high-nitrogen energetic compounds $ZTO{\cdot}2H_2O$ and $ZTO(phen){\cdot}H_2O$ have been synthesized (where ZTO = 4,4-azo-1,2,4-triazol-5-one and phen = 1,10-phenanthroline). The crystal structure, elemental analysis and IR spectroscopy are presented. Compound 1 $ZTO{\cdot}2H_2O$ crystallizes in the orthorhombic crystal system with space group Pnna and compound 2 $ZTO(phen){\cdot}H_2O$ in the triclinic crystal system with space group P-1. In $ZTO(phen){\cdot}H_2O$, there is intermolecular hydrogen bonds between the -NH group of ZTO molecule (as donor) and N atom of phen molecule (as acceptor). Thermal decomposition process is studied by applying the differential scanning calorimetry (DSC) and thermo thermogravimetric differential analysis (TG-DTG). The DSC curve shows that there is one exothermic peak in $ZTO{\cdot}2H_2O$ and $ZTO(phen){\cdot}H_2O$, respectively. The critical temperature of thermal explosion ($T_b$) for $ZTO{\cdot}2H_2O$ and $ZTO(phen){\cdot}H_2O$ is $282.21^{\circ}C$ and $195.94^{\circ}C$, respectively.

Keywords

References

  1. Badgujar, D. M.; Talawar, M. B.; Asthana, S. N.; Mahulikar, P. P. J. Hazard. Mater. 2008, 15, 289.
  2. Pagoria, P. F.; Lee, G. S.; Mitchell, A. R.; Schmidt, R. D. Thermochim. Acta 2002, 384, 187. https://doi.org/10.1016/S0040-6031(01)00805-X
  3. Chavez, D. E.; Hiskey, M. A. J. Energy Mater. 1999, 17, 357. https://doi.org/10.1080/07370659908201796
  4. Petrie, M. A.; Sheehy, J. A.; Boatz, J. A.; Rasul, G. J. Am. Chem. Soc. 1997, 119, 8802. https://doi.org/10.1021/ja9714189
  5. Talawar, M. B.; Sivabalan, R.; Mukundan, T.; Muthurajan, H.; Sikder, A. K.; Gandhe, B. R.; Rao, A. S. J. Hazard. Mater. 2009, 161, 589. https://doi.org/10.1016/j.jhazmat.2008.04.011
  6. Nair, U. R.; Asthana, S. N.; Rao, A. S.; Gandhe, B. R. Def. Sci. J. 2010, 60, 137. https://doi.org/10.14429/dsj.60.327
  7. Hiskey M. A.; Goldman N.; Stine J. R. J. Energet. Mater. 1998, 16, 119. https://doi.org/10.1080/07370659808217508
  8. Rice, B. M.; Byrd, E. F. C.; Mattson, W. D. Struct. Bond. 2007, 125, 153 (High Density Materials). https://doi.org/10.1007/430_2006_053
  9. Oestmark, H.; Walin, S.; Goede, P. Cent. Eur. J. Energetic Mater. 2007, 4, 83.
  10. Deblitz, R.; Hrib, C. G.; Plenikowski, G.; Edelmann, F. T. Inorg. Chem. Comm. 2012, 18, 57. https://doi.org/10.1016/j.inoche.2012.01.009
  11. Kroeger, C. F.; Hummel, L.; Mutscher, M.; Beyer, H. Berichte der Deutschen Chemische Gcsellschaft. 1965, 98, 3025. https://doi.org/10.1002/cber.19650980934
  12. Ma, H. X.; Song, J. R.; Hu, R. Z. J. Anal. Appl. Pyrolysis. 2008, 83, 145. https://doi.org/10.1016/j.jaap.2008.07.007
  13. Zhang, J. G.; Zhang, T. L. Acta Chim. Sin. 2000, 58, 1563.
  14. Zhang, J. G.; Zhang, T. L. Chin. J. Phys. Chem. 2000, 16, 1110.
  15. Ma, C.; Huang, J.; Ma, H. X. J. Mol. Struct. 2013, 1036, 521. https://doi.org/10.1016/j.molstruc.2012.10.064
  16. Zhong, Y. T.; Huang, J.; Song, J. R. Chin. J. Chem. 2011, 29, 1672. https://doi.org/10.1002/cjoc.201180243
  17. Sheldrick, G. M. SHELXL-97, Program for X-ray Crystal Structure Refinement, University of Gottingen: Germany, 1997.
  18. Roeges, N. P. G. A Guide to the Complete Interpretatin of Infraed Spectra of Organic Structures, Wiley: New York, 1994.
  19. EI-Shahawy, A. S.; Ahmed, S. M.; Sayed, N. K. Spectrochim. Acta A 2007, 66, 143. https://doi.org/10.1016/j.saa.2006.02.034
  20. Sundaraganesan, N.; Karpagam, J.; Sebastian, S.; Cornard, J. P. Spectrochim. Acta A 2009, 73, 11. https://doi.org/10.1016/j.saa.2009.01.007
  21. Socrates, G. Infrared and Raman Characteristic Group Frequencies, 3rd ed.; Wiley: New York, 2001.
  22. Kissinger, H. E. Anal. Chem. 1957, 29, 1702. https://doi.org/10.1021/ac60131a045
  23. Ozawa, T. Bull. Chem. Soc. Jpn. 1965, 38, 1881. https://doi.org/10.1246/bcsj.38.1881
  24. Hu, R. Z.; Yang, A. Q.; Ling, Y. J. Thermochim. Acta 1988, 123, 135. https://doi.org/10.1016/0040-6031(88)80017-0
  25. Hu, R. Z.; Gao, S. L.; Zhao, F. Q. Thermal Analysis Kinetics, 2nd ed.; Beijing: Science Press, 2008.
  26. Zhang, T. L.; Hu, R. Z.; Xie, Y. Thermochim. Acta 1994, 244, 17.

Cited by

  1. Three new compounds based on 4,4′-azo-1,2,4-triazol-5-one: Synthesis, crystal structure and thermal properties vol.32, pp.5, 2016, https://doi.org/10.1007/s40242-016-6114-6
  2. The crystal structure and thermal analysis of ZTO and its solvent adducts vol.42, pp.5, 2016, https://doi.org/10.1007/s11164-015-2278-9
  3. Nitrogen-rich 4,4′-azo bis(1,2,4-triazolone) salts—the synthesis and promising properties of a new family of high-density insensitive materials vol.45, pp.8, 2016, https://doi.org/10.1039/C5DT04731E
  4. Preparation, crystal structure, thermal behavior, and theoretical studies of N,N′-dinitro-4, 4′-azo-bis(1,2,4-triazolone) (DNZTO) vol.71, pp.3, 2016, https://doi.org/10.1515/znb-2015-0121
  5. -1,2,4-triazol-5-one) vol.72, pp.2, 2016, https://doi.org/10.1107/S2053229616001509
  6. Thermogravimetric analysis, kinetic study, and pyrolysis–GC/MS analysis of 1,1ʹ-azobis-1,2,3-triazole and 4,4ʹ-azobis-1,2,4-triazole vol.12, pp.1, 2018, https://doi.org/10.1186/s13065-018-0381-x
  7. Synthesis, Structure Characteristic and Thermal Behavior of Two New Metal-organic Azo-triazole Compounds: [Zn(phen)3]·ZTO·6H2O and [Cu(phen)3]·ZTO·6H2O pp.2210-3171, 2018, https://doi.org/10.1007/s40242-018-8051-z
  8. -1,2,4-triazol-5-one based nitrogen-rich salts as potential energetic compounds vol.8, pp.42, 2018, https://doi.org/10.1039/C7RA13424J
  9. Crystal structure of tetraqua((E)-4,4′-(diazene-1,2-diyl)bis(5-oxo-4,5-dihydro-1,2,4-triazol-1-ide)-κ2N:O)barium(II), C4H10N8O6Ba vol.231, pp.2, 2013, https://doi.org/10.1515/ncrs-2015-0164
  10. Crystal structure of potassium (E)-5-oxo-4-((5-oxo-1H-1,2,4-triazol-4(5H)-yl)diazenyl)-4,5-dihydro-1,2,4-triazol-1-ide – (E)-4,4-diazene-1,2-diylbis(2,4-dihydro-3H-1,2,4-triazol-3-one) – vol.231, pp.3, 2013, https://doi.org/10.1515/ncrs-2015-0218
  11. Preparation, crystal structure, thermal behavior and DFT calculations of two acetyl triazolone derviatives vol.1146, pp.None, 2017, https://doi.org/10.1016/j.molstruc.2017.05.124
  12. Synthesis, characterization, thermal properties and theoretical investigation on Bis(guanidinium) 4,4′- Azo-1H-1,2,4-triazol-5-one vol.1147, pp.None, 2013, https://doi.org/10.1016/j.molstruc.2017.06.115