DOI QR코드

DOI QR Code

Effects of Phosphorous-doping on Electrochemical Performance and Surface Chemistry of Soft Carbon Electrodes

  • Kim, Min-Jeong (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Yeon, Jin-Tak (Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Hong, Kijoo (GS Energy, CRD Center) ;
  • Lee, Sang-Ick (GS Energy, CRD Center) ;
  • Choi, Nam-Soon (Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kim, Sung-Soo (Graduate School of Green Energy Technology, Chungnam National University)
  • Received : 2013.01.23
  • Accepted : 2013.04.10
  • Published : 2013.07.20

Abstract

The impact of phosphorous (P)-doping on the electrochemical performance and surface chemistry of soft carbon is investigated by means of galvanostatic cycling and ex situ X-ray photoelectron spectroscopy (XPS). P-doping plays an important role in storing more Li ions and discernibly improves reversible capacity. However, the discharge capacity retention of P-doped soft carbon electrodes deteriorated at $60^{\circ}C$ compared to non-doped soft carbon. This poor capacity retention could be improved by vinylene carbonate (VC) participating in forming a protective interfacial chemistry on soft carbon. In addition, the effect of P-doping on exothermic thermal reactions of lithiated soft carbon with electrolyte solution is discussed on the basis of differential scanning calorimetry (DSC) results.

Keywords

References

  1. Tarascon, J. M.; Armand, M. Nature 2001, 414, 359. https://doi.org/10.1038/35104644
  2. Cheng, F.; Liang, J.; Tao, Z.; Chen, J. Adv. Mater. 2011, 23, 1695. https://doi.org/10.1002/adma.201003587
  3. Choi, N.-S.; Yao, Y.; Cui, Y.; Cho, J. J. Mater. Chem. 2011, 21, 9825. https://doi.org/10.1039/c0jm03842c
  4. Matsumura, Y.; Wang, S.; Mondori, J. Carbon 1995, 33, 1457. https://doi.org/10.1016/0008-6223(95)00098-X
  5. Komaru, A.; Azuma, H.; Nishi, Y. Japan patent, No. H5-74457.
  6. Wang, S.; Matsui, H.; Matsumira, Y. Synthetic Metals 1999, 103, 2521. https://doi.org/10.1016/S0379-6779(98)01088-1
  7. Zheng, T.; Liu, Y.; Fuller, E. W.; Tseng, S.; von Sacken, U.; Dahn, J. R. J. Electrochem. Soc. 1995, 142, 2581. https://doi.org/10.1149/1.2050057
  8. Dahn, J. R.; Sleigh, A. K.; Reimers, J. N.; Zhong, Q.; Way, B. M. Electrochim. Acta 1993, 38, 1179. https://doi.org/10.1016/0013-4686(93)80048-5
  9. Gong, J.; Wu, H.; Yang, Q. Carbon 1999, 37, 1409. https://doi.org/10.1016/S0008-6223(99)00002-0
  10. Wang, S.; Matsumura, Y.; Maeda, T. Synthetic Metals 1995, 71, 1759. https://doi.org/10.1016/0379-6779(94)03039-9
  11. Tran, T. D.; Feikert, J. H.; Song, X.; Kinosita, K. J. Electrochem. Soc. 1995, 142, 3297. https://doi.org/10.1149/1.2049977
  12. Wu, Y.; Rahm, E.; Holze, R. Electrochim. Acta 2002, 47, 3491. https://doi.org/10.1016/S0013-4686(02)00317-1
  13. Wu, Y.; Fang, S.; Jiang, Y. J. Power Sources 1998, 75, 201. https://doi.org/10.1016/S0378-7753(98)00097-4
  14. Verma, P.; Maire, P.; Novák, P. Electrochimica Acta 2010, 55, 6332. https://doi.org/10.1016/j.electacta.2010.05.072
  15. Laine, J.; Calafat, A.; Labady, M. Carbon 1989, 27, 191. https://doi.org/10.1016/0008-6223(89)90123-1
  16. Oh, S.; Rodriquez, N. J. Mater. Res. 1993, 8, 2879. https://doi.org/10.1557/JMR.1993.2879
  17. Zhang, H.; Lu, Y.; Gu, C.-D.; Wang, X.-L.; Tu, J.-P. Cryst. Eng. Comm. 2012, 14, 7942. https://doi.org/10.1039/c2ce25939g
  18. Puziy, A. M.; Poddubnaya, O. I.; Socha, R. P.; Gurgul, J.; Wisniewski, M. Carbon 2008, 46, 2113. https://doi.org/10.1016/j.carbon.2008.09.010
  19. Choi, N.-S.; Profatilova, I. A.; Kim, S.-S.; Song, E. H. Thermochim. Acta 2008, 480, 10. https://doi.org/10.1016/j.tca.2008.09.017
  20. Yamaki, J. I.; Takatsuji, H.; Kawamura, T.; Egashira, M. Solid State Ionics 2002, 148, 241. https://doi.org/10.1016/S0167-2738(02)00060-7
  21. Jeong, S.-K.; Inaba, M.; Mogi, R.; Iriyama, Y.; Abe, T.; Ogumi, Z. Langmuir 2001, 17, 8281. https://doi.org/10.1021/la015553h
  22. Aurbach, D.; Gamolsky, K.; Markovsky, B.; Gofer, Y.; Schmidt, M.; Heider, U. Electrochim. Acta 2002, 47, 1423. https://doi.org/10.1016/S0013-4686(01)00858-1
  23. Buqa, H.; Wursig, A.; Vetter, J.; Spahr, M. E.; Krumeich, F.; Novak, P. J. Power Sources 2006, 153, 385. https://doi.org/10.1016/j.jpowsour.2005.05.036
  24. Ota, H.; Shima, K.; Ue, M.; Yamaki, J.-I. Electrochim. Acta 2004, 49, 565. https://doi.org/10.1016/j.electacta.2003.09.010
  25. Zhang, S. S.; Xu, K.; Jow, T. R. Electrochim. Acta 2006, 51, 1636. https://doi.org/10.1016/j.electacta.2005.02.137
  26. Herstedt, M.; Rensmo, H.; Siegbahn, H.; Edstrom, K. Electrochim. Acta 2004, 49, 2351. https://doi.org/10.1016/j.electacta.2004.01.016

Cited by

  1. /C Nanofibers by Phosphidation and Their Electrochemical Superiority for Lithium Rechargeable Batteries vol.6, pp.12, 2014, https://doi.org/10.1021/am5018122
  2. “Protrusions” or “holes” in graphene: which is the better choice for sodium ion storage? vol.10, pp.4, 2017, https://doi.org/10.1039/C7EE00329C
  3. type ZnO vol.111, pp.9, 2017, https://doi.org/10.1063/1.5001071
  4. A Method of Combining the Increased Density of Acceptors with Restrained Density of Oxygen Vacancies to Fabricate p-Type Single-Crystalline ZnO Films pp.1543-186X, 2018, https://doi.org/10.1007/s11664-018-6784-6
  5. Formation of the Solid Electrolyte Interphase at Constant Potentials: A Model Study on Highly Oriented Pyrolytic Graphite vol.1, pp.3, 2013, https://doi.org/10.1002/batt.201800029
  6. Interface modulation of a layer-by-layer electrodeposited FexCo(1−x)P/NiP@CC heterostructure for high-performance oxygen evolution reaction vol.4, pp.4, 2013, https://doi.org/10.1039/c9se01175g