DOI QR코드

DOI QR Code

A Constitutive Model for the Rate-dependent Deformation Behavior of a Solid Polymer

속도 의존적인 폴리머 거동에 대한 구성적 모델

  • Ho, K. (Keimyung University, Department of Mechanical Engineering)
  • Received : 2013.05.13
  • Accepted : 2013.06.25
  • Published : 2013.07.01

Abstract

Solid polymers exhibit rate-dependent deformation behavior such as nonlinear strain rate sensitivity and stress relaxation like metallic materials. Despite the different microstructures of polymeric and metallic materials, they have common properties with respect to inelastic deformation. Unlike most metallic materials, solid polymers and shape memory alloys (SMAs) exhibit highly nonlinear stress-strain behavior upon unloading. The present work employs the viscoplasticity theory [K. Ho, 2011, Trans. Mater. Process. 20, 350-356] developed for the pseudoelastic behavior of SMAs, which is based on unified state variable theory for the rate-dependent inelastic deformation behavior of typical metallic materials, to depict the curved unloading behavior of polyphenylene oxide (PPO). The constitutive equations are characterized by the evolution laws of two state variables that are related to the elastic modulus and the back stress. The simulation results are compared with the experimental data obtained by Krempl and Khan [2003, Int. J. Plasticity 19, 1069-1095].

Keywords

References

  1. N. G. McCrum, C. P. Buckley, C. B. Bucknall, 1997, Principles of Polymer Engineering, Second Ed., Oxford University Press.
  2. H. F. Brinson, L. C. Brinson, 2010, Polymer Engineering Science and Viscoelasticity: An introduction, Springer.
  3. A. S. Argon, 1973, A Theory for the Lowtemperature Plastic Deformation of Glassy Polymers, Philos. Mag., Vol. 28, No. 2, pp. 839-865. https://doi.org/10.1080/14786437308220987
  4. M. C. Boyce, D. M. Parks, A. S. Argon, 1988, Large Inelastic Deformation of Glassy Polymers. Part I: Rate Dependent Constitutive Model, Mech. Mater., Vol. 7, No. 1, pp. 15-33. https://doi.org/10.1016/0167-6636(88)90003-8
  5. E. Giessen, 1997, Localized Plastic Deformation in Glassy Polymers, Eur. J. Mech. A/Solids, Vol. 16, pp. 87-106.
  6. R. B. Dupaix, M. C. Boyce, 2007, Constitutive Modeling of the Finite Strain Behavior of Amorphous Polymers In and Above the Glass Transition, Mech. Mater., Vol. 39, No. 1, pp. 39-52. https://doi.org/10.1016/j.mechmat.2006.02.006
  7. D. M. Parks, S. Azhi, 1990, Polycrystalline Plastic Deformation and Texture Evolution for Crystals Lacking Five Independent Slip Systems, J. Mech. Phys. Solids, Vol. 38, No. 5, pp. 701-724. https://doi.org/10.1016/0022-5096(90)90029-4
  8. B. J. Lee, D. M. Parks, S. Ajzi, 1993, Micromechanical Modeling of Large Plastic Deformation and Texture Evolution in Semicrystalline Polymers, J. Mech. Phys. Solids, Vol. 41, No. 10, pp. 1651-1687. https://doi.org/10.1016/0022-5096(93)90018-B
  9. J. Dommelen, D. M. Parks, M. C. Boyce, W. Brekelmans, F. Baaijens, 2003, Micromechanical Modeling of the Elasto-viscoplastic Behavior of Semi-crystalline Polymers, J. Mech. Phys Solids, Vol. 51, No. 3, pp. 519-541. https://doi.org/10.1016/S0022-5096(02)00063-7
  10. A. D. Drozdov, J. Christiansen, 2007, Cyclic Viscoplasticity of High-density Polyethylene: Experiments and Modeling, Comput. Mater. Sci., Vol. 39, No. 2, pp. 465-480. https://doi.org/10.1016/j.commatsci.2006.07.014
  11. R. W. Meyer, L. A. Pruitt, 2001, The Effect of Cyclic True Strain on the Morphology, Structure, and Relaxation Behavior of Ultra High Molecular Weight Polyethylene, Polym., Vol. 42, No. 12, pp. 5293-5306. https://doi.org/10.1016/S0032-3861(00)00626-1
  12. A. Galeski, 2003, Strength and Toughness of Crystalline Polymer Systems, Prog. Polym. Sci., Vol. 28, No. 12, pp. 1643-1699. https://doi.org/10.1016/j.progpolymsci.2003.09.003
  13. A. Rozanski, A. Galeski, 2013, Plastic Yielding of Semicrystalline Polymers Affected by Amorphous Phase, Int. J. Plast., Vol. 41, pp. 14-29. https://doi.org/10.1016/j.ijplas.2012.07.008
  14. S. G. Bardenhagen, M. G. Stout, G. T. Gray, 1997, Three-dimensional, Finite Deformation, Viscoplastic Constitutive Models for Polymeric Materials, Mech. Mater., Vol. 25, No. 4, pp. 235-253. https://doi.org/10.1016/S0167-6636(97)00007-0
  15. C. Zhang, I.D. Moore, 1997, Nonlinear Mechanical Response of High Density Polyethylene. Part II: Uniaxial Constitutive Modeling, Polym. Eng. Sci., Vol. 37, No. 2, pp. 414-420. https://doi.org/10.1002/pen.11684
  16. K. Ho, 1998, Application of the Viscoplasticity Based on Overstress to the Modeling of Dynamic Strain Aging of Metals and to the Modeling of the Solid Polymers Specifically to Nylon 66, Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY.
  17. E. Kremp, K. Ho, 2000, An Overstress Model for Solid Polymer Deformation Behavior Applied to Nylon 66, ASTM STP 1357, pp. 118-137.
  18. E. Krempl, F. Khan, 2003, Rate (time)-dependent Deformation Behavior: An Overview of Some Properties of Metals and Solid Polymers, Int. J. Plast., Vol. 19, No. 7, pp. 1069-1095. https://doi.org/10.1016/S0749-6419(03)00002-0
  19. K. Ho, 2010, A Phenomenological Constitutive Model for Pseudoelastic Shape Memory Alloy, Trans. Mater. Process., Vol. 19, No. 8, pp. 468-473. https://doi.org/10.5228/KSTP.2010.19.8.468
  20. K. Ho, 2011, An Improved Constitutive Model of Shape Memory Alloy, Trans. Mater. Process., Vol. 20, No. 5, pp. 350-356. https://doi.org/10.5228/KSTP.2011.20.5.350
  21. J. Lemaitre, J. L. Chaboche, 1998, Mechanics of Solid Materials, Cambridge University Press, United Kingdom.
  22. D. C. Stouffer, L. T. Dame, 1996, Inelastic Deformation of Metals, John Wiley & Sons, New York.
  23. A. S. Krausz, K. Krausz, 1996, Unified Constitutive Laws of Plastic Deformation, Academic Press, San Diego.
  24. K. Ho, 2001, Modeling of Nonlinear Rate Sensitivity by Using an Overstress Model, Comput. Model. Eng. Sci., Vol. 2, No. 3, pp. 351-364.
  25. K. Ho, 2008, Effect of the Rate Dependence of Nonlinear Kinematic Hardening Rule on Relaxation Behavior, Int. J. Solids Struct., Vol. 45, No. 3-4, pp. 821-839. https://doi.org/10.1016/j.ijsolstr.2007.09.003
  26. K. Ho, 2006, Unified Constitutive Equations of Viscoplastic Deformation: Development and Capabilities, JSME Int J., Ser. A, Vol. 49, No. 1, pp. 138-146. https://doi.org/10.1299/jsmea.49.138