초록
본 연구는 기존의 선형적인 공사비 예측방법의 한계를 극복하고 사례기반추론 (Case Based Reasoning, CBR)기법을 통해 기획단계의 실적정보를 활용하여 신뢰도 높은 공사비 예측 모델을 제시하는 것이 목적이다. 이를 위하여 사례기반추론 기법과 유전자알고리즘 (Genetic Algorithm, GA)의 선택연산을 복합적으로 활용한 스프레드시트 기반의 교량공사비 추론모델을 제시하였다. 추론모델의 검증을 위하여 국내 교량공사 시공사례 4건을 적용하였으며, 적용 결과 평균 8.69%의 오차율로 나타나 교량공사비의 예측 정확도가 타 분석방법과 비교하여 상대적으로 높은 것으로 파악하였다. 연구에서 제시된 교량공사비 예측모델은 초기 설계단계에서 상세제원에 대한 정보를 획득할 수 없을 경우에, 교량의 대표적 제원정보 만으로 공사비 선택범위를 최소화된 오차율로 예측할 수 있으므로, 개선된 보정 방법으로서 교량공사의 합리적인 개략공사비 산정에 활용될 수 있을 것으로 판단된다.
The aim of this study is to present a prediction model of construction cost for a bridge that has a high reliability using historical data from the planning phase based on a CBR (Case-Based Reasoning) method in order to overcome limitations of existing construction cost prediction methods, which is linearly estimated. To do this, a reasoning model of bridge construction cost by a spreadsheet template was suggested using complexly both CBR and GA (Genetic Algorithm). Besides, this study performed a case study to verify the suggested cost reasoning model for bridge construction projects. Measuring efficiency for a result of the case study was 8.69% on average. Since accuracy of the suggested prediction cost is relatively high compared to the other analysis methods for a prediction of construction cost, reliability of the suggested model was secured. In the case that information for detailed specifications of each bridge type in an initial design phase is difficult to be collected, the suggested model is able to predict the bridge construction cost within the minimized measuring efficiency with only the representative specifications for bridges as an improved correction method. Therefore, it is expected that the model will be used to estimate a reasonable construction cost for a bridge project.