참고문헌
- Broderick, N.A., Raffa, K.F., Handelsman, J., 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103, 15196-15199. https://doi.org/10.1073/pnas.0604865103
- Broderick, N.A., Raffa, K.F., Handelsman, J., 2010. Chemical modulators of the innate immune response alter gypsy moth larval susceptibility to Bacillus thuringiensis. BMC Microbiol. 10, 129. https://doi.org/10.1186/1471-2180-10-129
- Gill, S.S., Cowles, E.A., Pietrantonio, P.V., 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37, 615-636. https://doi.org/10.1146/annurev.en.37.010192.003151
- Herbert, E. E., Goodrich-Blair, H,. 2007. Friend and foe: the two face of Xenorhabdus nematophila. Nat Rev. Microbial. 5: 634-646. https://doi.org/10.1038/nrmicro1706
- Hoffman, C., Vanderbruggen, H., Hofte, H., Van Rie, J., Jansens, S., Van Mellaert, H., 1988. Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA 85, 7844-7848. https://doi.org/10.1073/pnas.85.21.7844
- Jenkins, J.I., Dean, D.H., 2000. Exploring the mechanism of action of insecticidal proteins by genetic engineering methods. pp. 33-54. In Genetic engineering: principles and methods, vol. 22. eds. by K. Setlow. Plenum, New York.
- Jung, S., Kim, Y., 2006. Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata ssp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 35, 1584-1589. https://doi.org/10.1603/0046-225X(2006)35[1584:SEOEBX]2.0.CO;2
-
Kim, Y., Ji, D., Cho, S., Park, Y., 2005. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase
$A_2$ to induce host immunodepression. J. Invertebr. Pathol. 89, 258-264. https://doi.org/10.1016/j.jip.2005.05.001 - Lee, S., Hong, Y.P., Seo, S., Kim, Y., Choi, J., 2012. Identification, synthesis, and biological activities of cyclic L-prolyl-L-tyrosine. J. Korean Chem. Soc. 56, 661-664. https://doi.org/10.5012/jkcs.2012.56.5.661
- Park, Y., Kim, Y., 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46, 1469-1476. https://doi.org/10.1016/S0022-1910(00)00071-8
- Rahman, M.M., Roberts, H.L.S., Sarjan, M., Asgari, S., Schmidt, O., 2004. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. Proc. Natl. Acad. Sci. USA 101, 2696-2699. https://doi.org/10.1073/pnas.0306669101
- SAS Institute, Inc. 1989. SAS/STAT user's guide, release 6.03, Ed. Cary, N.C.
- Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D.R. Zeigler and D.H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. J. Microbiol. Mol. Biol. Rev. 62: 775-806.
- Seo, S., Kim, Y., 2011. Development of "Bt-Plus" biopesticide using entomopathogenic bacterial (Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata) metabolites. Korean J. Appl. Entomol. 50, 171-178. https://doi.org/10.5656/KSAE.2011.07.0.24
-
Seo, S., Lee, S., Hong, Y.P., Kim, Y., 2012. Chemical identification and biological characterization of phospholipase
$A_2$ inhibitors synthesized by entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Microbiol. 78, 3816-3823. https://doi.org/10.1128/AEM.00301-12 -
Shrestha, S., Kim, Y., 2009. Biochemical characteristics of immune-associated phospholipase
$A_2$ and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47, 774-782. https://doi.org/10.1007/s12275-009-0145-3 - Stanley, D., 2006. Prostaglandins and other eicosanoids in insects:biological significance. Annu. Rev. Entomol. 51, 25-44. https://doi.org/10.1146/annurev.ento.51.110104.151021
- Stanley, D., Kim, Y., 2011. Prostaglandins and their receptors in insect biology. Front. Endocrinol. 2:105. doi: 10.3389/fendo.2011.00105.
- Tabashnik, B.E., Liu, Y.B., Malvar, T., Heckel, D.G., Masson, L., Ballester, V., Granero, F., Mensua, J.L., Ferre, J., 1997. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 94, 12780-12785. https://doi.org/10.1073/pnas.94.24.12780
- Tanada, Y., Kaya, H.K. 1993. Insect pathology, Academic Press, San Diego.
-
Zhang, X., Griko, N.B., Corona, S.K., Bulla, Jr., L.A., 2008. Enhanced exocytosis of the receptor BT-
$R_1$ induced by the Cry1Ab toxin of Bacillus thuringiensis directly correlates to the execution of cell death. Comp. Biochem. Physiol. B 149, 581-588. https://doi.org/10.1016/j.cbpb.2007.12.006