DOI QR코드

DOI QR Code

미생물살충제 "비티플러스" 액상 제형화 및 품질 분석 기술에 관한 연구

Study on Soluble Concentrate Formulation and Quality Control Techniques of a Microbial Insecticide "Bt-Plus"

  • 엄성현 (안동대학교 자연과학대학 생명자원과학과) ;
  • 박현지 (안동대학교 자연과학대학 생명자원과학과) ;
  • 김규순 (안동대학교 자연과학대학 생명자원과학과) ;
  • 홍유경 (안동대학교 자연과학대학 생명자원과학과) ;
  • 박지영 (안동대학교 자연과학대학 생명자원과학과) ;
  • 최봉기 (안동대학교 자연과학대학 생명자원과학과) ;
  • 김준성 (안동대학교 자연과학대학 생명자원과학과) ;
  • 김건우 (안동대학교 자연과학대학 생명자원과학과) ;
  • 강문수 ((주) YA 코리아) ;
  • 양경형 ((주) YA 코리아) ;
  • 김용균 (안동대학교 자연과학대학 생명자원과학과)
  • Eom, Seonghyeon (Department of Bioresource Sciences, Andong National University) ;
  • Park, Hyeonji (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Kyusoon (Department of Bioresource Sciences, Andong National University) ;
  • Hong, Youkyeong (Department of Bioresource Sciences, Andong National University) ;
  • Park, Jiyeong (Department of Bioresource Sciences, Andong National University) ;
  • Choi, Bongki (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Joonsung (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Kunwoo (Department of Bioresource Sciences, Andong National University) ;
  • Kang, Moonsoo (YA Korea, Inc.) ;
  • Yang, Kyunghyung (YA Korea, Inc.) ;
  • Kim, Yonggyun (Department of Bioresource Sciences, Andong National University)
  • 투고 : 2012.12.26
  • 심사 : 2013.04.05
  • 발행 : 2013.06.01

초록

곤충병원세균(Bacillus thuringiensis: 비티)의 살충효과를 증가시킨 미생물살충제 "비티플러스"가 개발되었다. 그러나 수화제 형태의 비티플러스는 농가나 산업체에서 높은 단가로 선호하지 않고 있는 실정이다. 이에 본 연구는 액상 제형의 비티플러스를 개발하는 연구 목적을 두었다. 이러한 목적에 따라 먼저 비티플러스 제조에 포함되는 두 세균 배양액의 최적 혼합 비율을 결정하였다. 이 최적 혼합액은 10%의 에탄올을 보존제로 사용되었으며, 비티와 또 다른 곤충병원세균인 Xenorhabdus nematophila (Xn)의 배양액 비율이 5:4 (v/v)로 제조하게 했다. 또한 이 액상제형이 1,000 희석배수에서 효과를 보이기 위해 비티 배양액을 10 배 농축하여 최적 비율로 혼합하였다. 이렇게 해서 얻어진 액상 제형을 발육후기 유충의 배추좀나방(Plutella xylostella)이 가해를 하는 배추밭에 처리하여 7일 후 약 77%의 방제 효과를 보였는데, 이 처리 효과는 현재 상용화되는 배추좀나방 적용 생물농약들과 비등한 효과를 나타내는 것으로 판명되었다. 저온 및 상온의 저장 분석에서 본 액상 제형은 최소한 한 달 동안 안정된 방제효과를 나타내는 것으로 분석되었다. 이 액상 제형의 안정된 방제 효과를 보장하여 주는 품질관리 기술을 개발하기 위해 제형 내 비티 포자 밀도와 Xn 유래 유용물질의 농도를 판별하였다. 본 연구 분석은 최적의 방제 효과를 나타내기 위해서는 비티플러스 액상 제형에 비티포자 밀도가 최소 $5{\times}10^{11}$ spores/mL 이고, Xn 세균 대사물질들 가운데 8 종 유효물질의 농도가 품질관리 판별 기준으로 제시되었다.

A microbial insecticide "Bt-Plus" has been developed to enhance an insecticidal efficacy of an entomopathogenic bacterium, Bacillus thuringiensis (Bt). However, its wettable powder formulation is not preferred by farmers and industry producers due to relatively high cost. This study aimed to develop a soluble concentrate formulation of Bt-Plus. To this end, an optimal mixture ratio of two bacterial culture broths was determined to be 5:4 (v/v) of Bt and Xenorhabdus nematophila (Xn) along with 10% ethanol preservative. In addition, Bt broth was concentrated by 10 times to apply the mixture at 1,000 times fold dilution. The resulting liquid formulation was sprayed on cabbage crop field infested by late instar larvae of the diamondback moth, Plutella xylostella. The field assay showed about 77% control efficacy at 7 days after treatment, which was comparable to those of current commercial biopesticides targeting P. xylostella. For storage test in both low and room temperatures, the liquid formation showed a relatively stable control efficacy at least for a month. To develop a quality control technique to exhibit a stable control efficacy of Bt-Plus, Bt spore density ($5{\times}10^{11}$ spores/mL) and eight active component concentrations of Xn bacterial metabolites in the formulation products have been proposed in this study.

키워드

참고문헌

  1. Broderick, N.A., Raffa, K.F., Handelsman, J., 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103, 15196-15199. https://doi.org/10.1073/pnas.0604865103
  2. Broderick, N.A., Raffa, K.F., Handelsman, J., 2010. Chemical modulators of the innate immune response alter gypsy moth larval susceptibility to Bacillus thuringiensis. BMC Microbiol. 10, 129. https://doi.org/10.1186/1471-2180-10-129
  3. Gill, S.S., Cowles, E.A., Pietrantonio, P.V., 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37, 615-636. https://doi.org/10.1146/annurev.en.37.010192.003151
  4. Herbert, E. E., Goodrich-Blair, H,. 2007. Friend and foe: the two face of Xenorhabdus nematophila. Nat Rev. Microbial. 5: 634-646. https://doi.org/10.1038/nrmicro1706
  5. Hoffman, C., Vanderbruggen, H., Hofte, H., Van Rie, J., Jansens, S., Van Mellaert, H., 1988. Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA 85, 7844-7848. https://doi.org/10.1073/pnas.85.21.7844
  6. Jenkins, J.I., Dean, D.H., 2000. Exploring the mechanism of action of insecticidal proteins by genetic engineering methods. pp. 33-54. In Genetic engineering: principles and methods, vol. 22. eds. by K. Setlow. Plenum, New York.
  7. Jung, S., Kim, Y., 2006. Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata ssp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 35, 1584-1589. https://doi.org/10.1603/0046-225X(2006)35[1584:SEOEBX]2.0.CO;2
  8. Kim, Y., Ji, D., Cho, S., Park, Y., 2005. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase $A_2$ to induce host immunodepression. J. Invertebr. Pathol. 89, 258-264. https://doi.org/10.1016/j.jip.2005.05.001
  9. Lee, S., Hong, Y.P., Seo, S., Kim, Y., Choi, J., 2012. Identification, synthesis, and biological activities of cyclic L-prolyl-L-tyrosine. J. Korean Chem. Soc. 56, 661-664. https://doi.org/10.5012/jkcs.2012.56.5.661
  10. Park, Y., Kim, Y., 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46, 1469-1476. https://doi.org/10.1016/S0022-1910(00)00071-8
  11. Rahman, M.M., Roberts, H.L.S., Sarjan, M., Asgari, S., Schmidt, O., 2004. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. Proc. Natl. Acad. Sci. USA 101, 2696-2699. https://doi.org/10.1073/pnas.0306669101
  12. SAS Institute, Inc. 1989. SAS/STAT user's guide, release 6.03, Ed. Cary, N.C.
  13. Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D.R. Zeigler and D.H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. J. Microbiol. Mol. Biol. Rev. 62: 775-806.
  14. Seo, S., Kim, Y., 2011. Development of "Bt-Plus" biopesticide using entomopathogenic bacterial (Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata) metabolites. Korean J. Appl. Entomol. 50, 171-178. https://doi.org/10.5656/KSAE.2011.07.0.24
  15. Seo, S., Lee, S., Hong, Y.P., Kim, Y., 2012. Chemical identification and biological characterization of phospholipase $A_2$ inhibitors synthesized by entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Microbiol. 78, 3816-3823. https://doi.org/10.1128/AEM.00301-12
  16. Shrestha, S., Kim, Y., 2009. Biochemical characteristics of immune-associated phospholipase $A_2$ and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47, 774-782. https://doi.org/10.1007/s12275-009-0145-3
  17. Stanley, D., 2006. Prostaglandins and other eicosanoids in insects:biological significance. Annu. Rev. Entomol. 51, 25-44. https://doi.org/10.1146/annurev.ento.51.110104.151021
  18. Stanley, D., Kim, Y., 2011. Prostaglandins and their receptors in insect biology. Front. Endocrinol. 2:105. doi: 10.3389/fendo.2011.00105.
  19. Tabashnik, B.E., Liu, Y.B., Malvar, T., Heckel, D.G., Masson, L., Ballester, V., Granero, F., Mensua, J.L., Ferre, J., 1997. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 94, 12780-12785. https://doi.org/10.1073/pnas.94.24.12780
  20. Tanada, Y., Kaya, H.K. 1993. Insect pathology, Academic Press, San Diego.
  21. Zhang, X., Griko, N.B., Corona, S.K., Bulla, Jr., L.A., 2008. Enhanced exocytosis of the receptor BT-$R_1$ induced by the Cry1Ab toxin of Bacillus thuringiensis directly correlates to the execution of cell death. Comp. Biochem. Physiol. B 149, 581-588. https://doi.org/10.1016/j.cbpb.2007.12.006