• Title/Summary/Keyword: Bt-Plus

Search Result 19, Processing Time 0.028 seconds

Mosquito Control Efficacy of a BtPlus Insecticide and Its Safety Assessment to Aquatic Environment (비티플러스 살충제의 모기 방제 효과 및 환경생물에 대한 안전성 평가)

  • Park, Youngjin;Ryu, Sungmin;Kwon, Bowon;Park, Chan;Kim, Jin;Kim, Yonggyun
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.3
    • /
    • pp.181-188
    • /
    • 2016
  • BtPlus is a group of biopesticides that are made of Bacillus thuringiensis and immunosuppressant. A new BtPlus that exhibits high insecticidal activity against mosquito larvae has been investigated in control efficacy in field conditions and its environmental safety against aquatic system. This study assessed the control efficacy of BtPlus against mosquito larvae with two different application methods. In aerial spraying application (100 mL per $3.3m^2$), BtPlus was effective at 50% or above formulation concentrations to control mosquito larvae. For a direct application to aqueous mosquito habitat, a semi-field mimicking paddy rice field was constructed. In this condition, BtPlus showed 80% and 100% control efficacies at 0.1% and 0.2% concentrations, respectively. BtPlus also showed 40% mortality against adults at 0.1% concentration in 10% sugar bait. However, its control efficacies against adults were much less than against larvae. Safety assessment of BtPlus against ecosystem was evaluated using young carp (Cyprinus carpio), a water flea (Daphnia magna), and a honey bee (Apis mellifera). BtPlus did not give any adverse effects on these nontarget organisms. Based on these results, BtPlus can be applied to control mosquitoes by direct aqueous application to paddy rice field.

Enhancement of Bt-Plus Toxicity by Unidentified Biological Response Modifiers Derived from the Bacterial Culture Broth of Xenornabdus nematiphila (Xenorhabuds nematophila 세균 배양액 유래 미확인 생리활성 물질의 비티플러스 살충력 상승효과)

  • Park, Youngjin;Kim, Minwoo;Kim, Kunwoo;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.54 no.2
    • /
    • pp.55-62
    • /
    • 2015
  • 'Bt-Plus' has been developed by mixing spores of Bacillus thuringiensis (Bt) and culture broth of Xenorhabdus nematophila (Xn). Despite its high toxicity, it has some imitation to broaden its efficacy against diverse insect pest spectrum. This study focuses on enhancement of Bt-Plus toxicity against semi-susceptible insect, Spodoptera exitgua, by addition of Xn metabolites. Two main Xn metabolites, oxindole (OI) and benzylideneacetone (BZA), are known to enhance the Bt insecticidal activities. The addition of OI or BZA significantly increased Bt-Plus pathogenicity. However, when the freeze-dried Xn culture broth was added to Bt-Plus, much less amount was enough to enhance the toxicity compared to the amount of OI or BZA. An HPLC analysis indicated that there were more than 12 unidentifed bacterial metabolites in Xn culture broth. These suggest that there are potent biological response modifiers in Xn metabolites other than OI and BZA.

Toxicity Evaluation of 'Bt-Plus' on Parasitoid and Predatory Natural Enemies (기생성 및 포식성 천적에 대한 작물보호제 '비티플러스'의 독성 평가)

  • Seo, Sam-Yeol;Srikanth, Koigoora;Kwon, Gi-Myon;Jang, Sin-Ae;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.51 no.1
    • /
    • pp.47-58
    • /
    • 2012
  • Effect of a new crop protectant 'Bt-Plus' on natural enemies was analyzed in this study. Tested natural enemies included two parasitic species of $Aphidius$ $colemani$ and $Eretmocerus$ $eremicus$, and four predatory species of $Harmonia$ $axyridis$, $Orius$ $laevigatus$, $Amblyseius$ $swirskii$, and $Phytoseiulus$ $persimilis$. 'Bt-Plus' was formulated by combination of three entomopathogenic bacteria ($Xenorhabdus$ $nematophila$ (Xn), $Photorhabdus$ $temperata$ subsp. $temperata$ (Ptt), $Bacillus$ $thuringiensis$ (Bt)) and bacterial metabolite (BM). All three types of 'Bt-Plus' showed significantly higher toxicities against fourth instar $Plutella$ $xylostella$ larvae than Bt single treatment. Two types of bacterial mixtures ('Xn+Bt' and 'Ptt+Bt') showed little toxicity to all natural enemies in both contact and oral feeding assays. However, 'BM+Bt' showed significant toxicities especially to two predatory mites of $A.$ $swirskii$ and $P.$ $persimilis$. The acaricidal effects of different bacterial metabolites were evaluated against two spotted spider mite, $Tetranychus$ $urticae$. All six BM chemicals showed significant acaricidal effects. The BM mixture used to prepare 'Bt-Plus' showed a high acaricidal activity with a median lethal concentration at 218.7 ppm (95% confidence interval: 163.2 - 262.3). These toxic effects of bacterial metabolites were also proved by cytotoxicity test against Sf9 cells. Especially, benzylideneacetone, which was used as a main ingredient of 'BM+Bt', showed high cytotoxicity at its low micromolar concentration.

Photophysical Properties of Highly Efficient Blue-Green Emitting Cationic Iridium (III) Complexes Containing Two 2-Phenylbenzothiazole Ligands and One Diphosphine Ligand

  • Yun, Seong-Jae;Song, Young-Kwang;Kim, Minji;Shin, Jaemin;Jin, Sung-Ho;Kang, Sung Kwon;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3199-3204
    • /
    • 2014
  • Two novel phosphorescent heteroleptic cationic Ir(III) complexes, Ir(bt)2(dmpe) (Ir1) and Ir (bt)2(dppe) (Ir2), where bt is 2-phenylbenzothiazole, dmpe is 1,2-bis(dimethylphosphino)ethane, and dppe is 1,2-bis(diphenyl-phosphino) ethane, were designed and synthesized. Their photophysical and electrochemical properties and the X-ray structure of the Ir1 complex were investigated. The prepared Ir(III) complexes exhibited blue-green emissions at 503-538 nm with vibronic fine structures in dichloromethane solution and PMMA film, implying that the lowest excited states are dominated by ligand-based $^3{\pi}-{\pi}^*$ transitions. The ${\pi}$-acceptor ability of the diphosphine ancillary ligand leads to blue-shift emission. The room temperature photoluminescent quantum yields (PLQYs) of Ir1 and Ir2 were 52% and 45%, respectively, in dichloromethane solution. These high PLQYs resulted from steric hindrances by the bulky cationic iridium complexes. The crystal structure of Ir1 was determined by X-ray crystallography, which revealed that central iridium adopted a distorted octahedral structure coordinated with two bt ligands (N^C) and one dmpe ligand (P^P) showing cis C-C and trans N-N dispositions. The bent nature of the dmpe ligand resulted in a relatively wide bite angle of $83.83^{\circ}$ of P-Ir-P.

Development of "Bt-Plus" Biopesticide Using Entomopathogenic Bacterial (Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata) Metabolites (곤충병원세균(Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata)의 대사물질을 이용한 "비티플러스" 생물농약 개발)

  • Seo, Sam-Yeol;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.50 no.3
    • /
    • pp.171-178
    • /
    • 2011
  • Bacillus thuringiensis (Bt) is a bacterial biopesticide against insect pests, mainly lepidopterans. Spodoptera exigua and Plutella xylostella exhibit significant decreases in Bt susceptibility in late larval instars. To enhance Bt pathogenicity, we used a mixture treatment of Bt and other bacterial metabolites which possessed significant immunosuppressive activities. Mixtures of Bt with culture broths of Xenorhabdus nematophila (Xn) or Photorhabdus temperata ssp. temperata (Ptt) significantly enhanced the Bt pathogenicity against late larval instars. Different ratios of Bt to bacterial culture broth had significant pathogenicities against last instar P. xylostella and S. exigua. Five compounds identified from the bacterial culture broth also enhanced Bt pathogenicity. After determining the optimal ratios, the mixture was applied to cabbage infested by late instar P. xylostella or S. exigua in greenhouse conditions. A mixture of Bt and Xn culture broth killed 100% of both insect pests when it was sprayed twice, while Bt alone killed less than 80% or 60% of P. xylostella and S. exigua, respectively. Other Bt mixtures, including Ptt culture broth or bacterial metabolites, also significantly increased pathogenicity in the semi-field assays. These results demonstrated that the Bt mixtures collectively names "Bt-Plus" can be developed into potent biopesticides to increase the efficacy of Bt.

Occurrence of the Onion Moth, Acrolepiopsis sapporensis, in the Welsh Onion Farms and its Treatment Using 'BtPlus' (대파 재배지 파좀나방(Acrolepiopsis sapporensis) 발생 현황과 '비티플러스' 처리 효과)

  • Md Tafim Hossain Hrithik;Gahyeon Jin;Yonggyun Kim
    • Korean journal of applied entomology
    • /
    • v.62 no.4
    • /
    • pp.277-285
    • /
    • 2023
  • The onion moth, Acrolepiopsis sapporensis, was monitored in the farms cultivating the welsh onion, Allium fistulosum, using sex pheromone from transplantation to harvest. Two occurrence peaks were observed at early June and late July after the overwintering population. However, the population sizes were varied among different years and the cultivating environments. To effectively control A. sapporensis with microbial pesticides, different Bacillus thuringiensis strains were screened to select B. thuringiensis kurstaki (BtK). To enhance the insecticidal virulence of BtK, the culture broth of Photorhabdus temperata temperata (Ptt) was added to the BtK. This mixture of two entomopathogenic bacteria was called 'BtPlus', which was superior to BtK alone in the insecticidal virulence. The enhanced virulence was explained by the immunosuppressive activity of the secondary metabolites contained in the Ptt extract. The metabolites inhibited both cellular and humoral immune responses of A. sapporensis, resulting in the enhanced virulence of BtK. These results suggest that A. sapporensis occurs in the welsh onion fields and the resulting economic damage would be effectively prevented by BtPlus application.

Development of a High Efficient "Dual Bt-Plus" Insecticide Using a Primary Form of an Entomopathogenic Bacterium, Xenorhabdus nematophila

  • Eom, Seonghyeon;Park, Youngjin;Kim, Hyeonghwan;Kim, Yonggyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.507-521
    • /
    • 2014
  • A phase variation has been reported in an entomopathogenic bacterium, Xenorhabdus nematophila. Compared with a wild-type primary form, a secondary form usually loses several physiological and biochemical characters. This study showed that the phase variation of X. nematophila caused a significant alteration in its immunosuppressive activity and subsequent entomopathogenicity. A secondary form of X. nematophila was detected in laboratory colonies and exhibited significant differences in dye absorption and entomopathogenicity. In addition, the secondary form was different in its production of eicosanoid-biosynthesis inhibitors (EBIs) compared with the primary form of X. nematophila. Production of oxindole and p-hydroxypropionic acid was significantly reduced in the culture broth of the secondary form of X. nematophila. The reduced EBI production resulted in significant suppression in the inhibitory effects on cellular nodule formation and phenoloxidase activity. Culture broth of the primary form of X. nematophila enhanced the pathogenicity of Bacillus thuringiensis ( Bt) significantly more than the culture broth of the secondary form. Furthermore, this study developed a highly efficient "Dual Bt-Plus: to control both lepidopteran insect pests Plutella xylostella and Spodoptera exigua, by mixing two effective Bt strains along with the addition of potent bacterial metabolites or 100-fold concentrated X. nematophila culture broth.

Effects of Dietary Lipid Sources on the Growth and Body Composition of the far Eastern Catfish, Silurus asotus (사료 지질원이 메기 Silurus asotus의 성장 및 체조성에 미치는 영향)

  • Kim, Kyoung-Duck;Kim, Jin-Do;Lim, Sang-Gu;Kang, Yong-Jin;Son, Maeng-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.5
    • /
    • pp.445-450
    • /
    • 2010
  • This study investigated the effects of dietary lipid sources on growth performance and body composition of juvenile far eastern catfish, Silurus asotus. Three replicate groups of fish (average weight 3.6 g) were fed with one of the following experimental diets containing 10% beef tallow (BT), 5% BT plus 5% corn oil (CO), 5% BT plus 5% linseed oil (LO), or 5% BT plus 5% squid liver oil (SO) as the lipid source for 5 weeks. No significant difference was observed in the survival among groups. The weight gain of fish fed the LO (high in 18:3n-3) and SO (high in n-3 highly unsaturated fatty acid) diets was significantly higher than that of the fish fed the CO (high in 18:2n-6) and BT diets (P<0.05). The feed efficiency of fish fed LO and SO diets was significantly higher than that of the fish fed the BT diet (P<0.05), but not significantly different from that of the fish fed the CO diet. The protein efficiency ratio of fish fed the SO diet was significantly higher than that of fish fed the CO and BT diets (P<0.05), but not significantly different from that of fish fed the LO diet. The 18:1n-9 of whole-body polar lipid fraction in fish fed the BT diet increased compared to that of fish fed the other diets. Fish fed the CO and LO diets had significantly higher contents of 18:2n-6 and 20:4n-6, and 18:3n-3, than the fish fed the other diets in polar and non-polar lipid fractions, respectively (P<0.05). Significantly higher contents of 20:5n-3 and 22:6n-3 were observed in the whole-body polar lipid fraction of fish fed the SO diet compared with fish fed the other diets (P<0.05). The study results indicate that linseed oil and squid liver oil containing n-3 fatty acids are good dietary lipid sources for the growth of far eastern catfish.

Microalgal Oil Supplementation Has an Anti-Obesity Effect in C57BL/6J Mice Fed a High Fat Diet

  • Yook, Jin-Seon;Kim, Kyung-Ah;Park, Jeong Eun;Lee, Seon-Hwa;Cha, Youn-Soo
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.4
    • /
    • pp.230-237
    • /
    • 2015
  • This study investigated the impact of microalgal oil (MO) on body weight management in C57BL/6J mice. Obesity was induced for 8 weeks and animals were orally supplemented with the following for 8 additional weeks: beef tallow (BT), corn oil, fish oil (FO), microalgal oil (MO), or none, as a high fat diet control group (HD). A normal control group was fed with a normal diet. After completing the experiment, the FO and MO groups showed significant decreases in body weight gain, epididymal fat pad weights, serum triglycerides, and total cholesterol levels compared to the HD and BT groups. A lower mRNA expression level of lipid anabolic gene and higher levels of lipid catabolic genes were observed in both FO and MO groups. Serum insulin and leptin concentrations were lower in the MO group. These results indicated that microalgal oil has an anti-obesity effect that can combat high fat diet-induced obesity in mice.

Study on Soluble Concentrate Formulation and Quality Control Techniques of a Microbial Insecticide "Bt-Plus" (미생물살충제 "비티플러스" 액상 제형화 및 품질 분석 기술에 관한 연구)

  • Eom, Seonghyeon;Park, Hyeonji;Kim, Kyusoon;Hong, Youkyeong;Park, Jiyeong;Choi, Bongki;Kim, Joonsung;Kim, Kunwoo;Kang, Moonsoo;Yang, Kyunghyung;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.52 no.2
    • /
    • pp.115-123
    • /
    • 2013
  • A microbial insecticide "Bt-Plus" has been developed to enhance an insecticidal efficacy of an entomopathogenic bacterium, Bacillus thuringiensis (Bt). However, its wettable powder formulation is not preferred by farmers and industry producers due to relatively high cost. This study aimed to develop a soluble concentrate formulation of Bt-Plus. To this end, an optimal mixture ratio of two bacterial culture broths was determined to be 5:4 (v/v) of Bt and Xenorhabdus nematophila (Xn) along with 10% ethanol preservative. In addition, Bt broth was concentrated by 10 times to apply the mixture at 1,000 times fold dilution. The resulting liquid formulation was sprayed on cabbage crop field infested by late instar larvae of the diamondback moth, Plutella xylostella. The field assay showed about 77% control efficacy at 7 days after treatment, which was comparable to those of current commercial biopesticides targeting P. xylostella. For storage test in both low and room temperatures, the liquid formation showed a relatively stable control efficacy at least for a month. To develop a quality control technique to exhibit a stable control efficacy of Bt-Plus, Bt spore density ($5{\times}10^{11}$ spores/mL) and eight active component concentrations of Xn bacterial metabolites in the formulation products have been proposed in this study.