DOI QR코드

DOI QR Code

탄성지지 보이론을 이용한 해중철도 간이 충돌해석법

Simplified Collision Analysis Method for Submerged Floating Railway Using the Theory of a Beam with an Elastic Foundation

  • 투고 : 2012.12.20
  • 심사 : 2013.04.24
  • 발행 : 2013.06.30

초록

해중철도는 파도와 바람의 영향을 크게 받지 않는 해중을 통과하는 터널내에 고속열차가 운행하는 철도시스템으로 수심에 관계없이 설치할 수 있고, 모듈별 육상 제작후 해상 대조립으로 건설이 가능하기 때문에 건설비용이 획기적으로 절감될 수 있는 장점이 있다. 본 연구에서는 해중철도의 개념설계안을 소개하고 안전성 확보를 위해 해중에서 잠수함과 충돌하는 경우를 대상으로 해중철도의 구조적 거동을 해석할 수 있는 기법을 제시하고자 한다. 탄성지지된 보이론을 활용하여 해중철도 함체의 등가 질량을 계산하고 잠수함과 완전탄성 충돌시 속도를 계산하고 에너지 보존의 원리에 따라 함체의 변형량과 최대굽힘모멘트를 계산하였다. 결과의 검증을 위해 보요소를 사용하여 충돌 유한요소해석을 실시하였고, 비교를 통해 타당성을 확인하였다. 본 연구에서 제안한 충돌 이론 해법은 간편하게 함체의 변형량과 최대굽힘모멘트를 계산할 수 있어 초기 설계시에 효과적으로 활용될 수 있다.

A submerged floating railway is an innovative tunnel infrastructure passing through the deep sea independent of wave and wind so that high speed trains can run on it. It doesn't depend on water depth and is cost effective due to modular construction on land. The construction period can be reduced drastically. This paper introduces the concept design of a submerged floating railway, and for securing safety, proposes a method to analyze the structural behavior of the body in case of collision with a submarine. The theory of a beam with an elastic foundation was used to calculate the equivalent mass of the body so that the perfect elastic collision could be applied to calculate the collision velocity. The maximum deformation and bending moment was analyzed based on energy conservation. To verify the results, a collision analysis using a finite element analysis code was made. Comparing the results confirmed that this simplified collision analysis method gives enough accurate deformation and bending moment to be used for actual estimation in the initial design stage.

키워드

참고문헌

  1. S.I. Seo (2012) Submerged floating railway connecting continentals, Proceedings of International Seminar, KRRI, 1-27.
  2. S.J. Lee, S.C. Yoon, S.H. Lee (2007) Design and construction of immersed tunnel connecting Busan to Geoje, Technical Review of Yooshin, 13, 242-263.
  3. H. Ostlid (2010) When is SFT competitive, Procedia Engineering, 4, 3-11. https://doi.org/10.1016/j.proeng.2010.08.003
  4. Y. Hong, F. Ge (2010) Dynamic response and structural integrity of submerged floating tunnel due to hydrodynamic load and accidental load, Procedia Engineering, 4, 35-50. https://doi.org/10.1016/j.proeng.2010.08.006
  5. S. Zhang, L. Wang, Y. Hong (2010) Vibration behavior and response to an accidental collision of SFT prototype in Qiandao Lake(China), Procedia Engineering, 4, 189-197. https://doi.org/10.1016/j.proeng.2010.08.022
  6. A.C. Ugural, S.K. Fenster (1977) Advanced strength and applied elasticity, Elsevier, New York, 283-300.
  7. Livermore Software Technology Corporation (2003) LS-DYNA User's Manual.
  8. M. Kawakami, et-al (1984) Guide to ship vibration, Nippon Kaiji Kyoka, Tokyo, 9-14.

피인용 문헌

  1. Simplified Shock Response Analysis for Submerged Floating Railway against Underwater Explosion vol.17, pp.2, 2014, https://doi.org/10.7782/JKSR.2014.17.2.100
  2. Challenge in Design and Construction of Submerged Floating Tunnel and State-of-art vol.166, 2016, https://doi.org/10.1016/j.proeng.2016.11.562
  3. Collision Analysis of Submerged Floating Tunnel by Underwater Navigating Vessel vol.27, pp.5, 2014, https://doi.org/10.7734/COSEIK.2014.27.5.369
  4. Dynamic Behavior of Submerged Floating Tunnel by Underwater Explosion vol.31, pp.5, 2018, https://doi.org/10.7734/COSEIK.2018.31.5.215