References
- Arbiser JL, Klauber N, Rohan R, et al (1998). Curcumin is an in vivo inhibitor of angiogenesis. Mol Med, 4, 376-78.
- Bergers G, Benjamin LE (2003). Tumorigenesis and the angiogenic switch. Nat Rev Cancer, 3, 401-10. https://doi.org/10.1038/nrc1093
- Bhandarkar SS, Arbiser JL (2007). Curcumin as an inhibitor of angiogenesis. Adv Exp Med Biol, 595, 185-95. https://doi.org/10.1007/978-0-387-46401-5_7
- Bhattacharyya S, Hossain DMS, Mohanty S, et al (2010). Curcumin reverses T cell-mediated adaptive immune dysfunctions in tumor-bearing hosts. Cell Mol Immunol, 7, 306-15. https://doi.org/10.1038/cmi.2010.11
- Bhattacharyya S, Mandal D, Saha B, et al (2007). Curcumin prevents tumor-induced T cell apoptosis through Stat-5amediated Bcl-2 induction. J Biol Chem, 282, 15954-64. https://doi.org/10.1074/jbc.M608189200
- Calderwood SK, Theriault JR, Gong J (2005). Message in a bottle: role of the 70-kDa heat shock protein family in anti-tumor immunity. Eur J Immunol, 35, 2518-27. https://doi.org/10.1002/eji.200535002
- Chen P, Yang L, Yang H, et al (2008). Synergistic antitumor effect of CXCL10 with hyperthermia. J Cancer Res Clin, 134, 679-87. https://doi.org/10.1007/s00432-007-0337-3
- Cheng AL, Hsu CH, Lin JK, et al (2001). Phase I clinical trial of curcumin, a chemopreventive agent, in patients with highrisk or pre-malignant lesions. Anticancer Res, 21, 2895-990.
- Dayanc BE, Beachy SH, Ostberg JR, et al (2008). Dissecting the role of hyperthermia in natural killer cell mediated anti-tumor responses. Int J Hyperther, 24, 41-56. https://doi.org/10.1080/02656730701858297
- Dhillon N, Aggarwal BB, Newman RA, et al (2008). Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res, 14, 4491-9. https://doi.org/10.1158/1078-0432.CCR-08-0024
- Folkman J (1992). The role of angiogenesis in tumor growth. Semin Cancer Biol, 3, 65-71
- Folkman J (2002). Role of angiogenesis in tumor growth and metastasis. Semin Oncol, 29, 15-8.
- Gasparini G, Longo R, Toi M, et al (2005). Angiogenic inhibitors: a new therapeutic strategy in oncology. Nat Clin Pract Oncol, 2, 562-77.
- Goel A, Kunnumakkara AB, Aggarwal BB (2008). Curcumin as " Curecumin": From kitchen to clinic. Biochem Pharmacol, 75, 787-809. https://doi.org/10.1016/j.bcp.2007.08.016
- Granci V, Dupertuis YM, Pichard C (2010). Angiogenesis as a potential target of pharmaconutrients in cancer therapy. Curr Opin Clin Nutr, 13, 417-22. https://doi.org/10.1097/MCO.0b013e3283392656
- Gururaj AE, Belakavadi M, Venkatesh DA, et al (2002). Molecular mechanisms of anti-angiogenic effect of curcumin. Biochem Biophys Res Commun, 297, 934-42. https://doi.org/10.1016/S0006-291X(02)02306-9
- Hildebrandt B, Wust P, Ahlers O, et al (2002). The cellular and molecular basis of hyperthermia. Crit Rev Oncol, 43, 33-56. https://doi.org/10.1016/S1040-8428(01)00179-2
- Huang Q, Hu JK, Lohr F, et al (2000). Heat-induced gene expression as a novel targeted cancer gene therapy strategy. Cancer Res, 60, 3435-39.
- Karunagaran D, Rashmi R, Kumar T (2005). Induction of apoptosis by curcumin and its implications for cancer therapy. Curr Cancer Drug Tar, 5, 117-29. https://doi.org/10.2174/1568009053202081
- Liu JY, Wei YQ, Yang L, et al (2003). Immunotherapy of tumors with vaccine based on quail homologous vascular endothelial growth factor receptor-2. Blood, 102, 1815-23. https://doi.org/10.1182/blood-2002-12-3772
- Ma J, Chen CS, Blute T, Waxman DJ (2011). Antiangiogenesis enhances intratumoral drug retention. Cancer Res, 71, 2675-85. https://doi.org/10.1158/0008-5472.CAN-10-3242
- Manjili M, Wang XY, Park J, et al (2002). Cancer immunotherapy: stress proteins and hyperthermia. Int J Hyperther, 18, 506-20. https://doi.org/10.1080/02656730110116696
- Moyer HR, Delman KA (2008). The role of hyperthermia in optimizing tumor response to regional therapy. Int J Hyperther, 24, 251-61. https://doi.org/10.1080/02656730701772480
- Pajonk F, van Ophoven A, McBride WH (2005). Hyperthermiainduced proteasome inhibition and loss of androgen receptor expression in human prostate cancer cells. Cancer Res, 65, 4836-43. https://doi.org/10.1158/0008-5472.CAN-03-2749
- Roca C, Primo L, Valdembri D, et al (2003). Hyperthermia inhibits angiogenesis by a plasminogen activator inhibitor 1-dependent mechanism. Cancer Res, 63, 1500-07.
- Sawaji Y, Sato T, Takeuchi A, et al (2002). Anti-angiogenic action of hyperthermia by suppressing gene expression and production of tumour-derived vascular endothelial growth factor in vivo and in vitro. Brit J Cancer, 86, 1597-603. https://doi.org/10.1038/sj.bjc.6600268
- Stankiewicz A, Livingstone A, Mohseni N, et al (2009). Regulation of heat-induced apoptosis by Mcl-1 degradation and its inhibition by Hsp70. Cell Death Differ, 16, 638-47. https://doi.org/10.1038/cdd.2008.189
- Wei YQ, Wang QR, Zhao X, et al (2000). Immunotherapy of tumors with xenogeneic endothelial cells as a vaccine. Nat Med, 6, 1160-66. https://doi.org/10.1038/80506
- Zetter P, Bruce R (1998). Angiogenesis and tumor metastasis. Annu Rev Med, 49, 407-24. https://doi.org/10.1146/annurev.med.49.1.407
- Zhang HG, Mehta K, Cohen P, et al (2008). Hyperthermia on immune regulation: a temperature's story. Cancer Lett, 271, 191-204. https://doi.org/10.1016/j.canlet.2008.05.026
Cited by
- Luteolin-loaded Phytosomes Sensitize Human Breast Carcinoma MDA-MB 231 Cells to Doxorubicin by Suppressing Nrf2 Mediated Signalling vol.15, pp.13, 2014, https://doi.org/10.7314/APJCP.2014.15.13.5311
- Targeting Cancer with Nano-Bullets: Curcumin, EGCG, Resveratrol and Quercetin on Flying Carpets vol.15, pp.9, 2014, https://doi.org/10.7314/APJCP.2014.15.9.3865
- Dual-drug delivery of curcumin and platinum drugs in polymeric micelles enhances the synergistic effects: a double act for the treatment of multidrug-resistant cancer vol.3, pp.1, 2015, https://doi.org/10.1039/C4BM00272E
- Progress in nanotechnology-based drug carrier in designing of curcumin nanomedicines for cancer therapy: current state-of-the-art vol.24, pp.4, 2016, https://doi.org/10.3109/1061186X.2015.1055570