DOI QR코드

DOI QR Code

NaCl 용액에서 Nb 첨가가 Ti 합금의 부식 거동에 미치는 영향

Effects of Niobium Addition on the Corrosion Behavior of Ti Alloys in NaCl Solution

  • 김은실 (조선대학교 치의학전문대학원 치과재료학교실 & 생체재료나노계면활성화센터) ;
  • 김원기 (대구 보건대학교 치기공과) ;
  • 최한철 (조선대학교 치의학전문대학원 치과재료학교실 & 생체재료나노계면활성화센터)
  • Kim, E.S. (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University) ;
  • Kim, W.G. (Department of Dental Technology, Daegu Health College) ;
  • Choe, H.C. (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University)
  • 투고 : 2012.12.17
  • 심사 : 2013.02.22
  • 발행 : 2013.02.15

초록

In this study, the effect of niobium addition on the passivation behavior of Ti alloys in NaCl solution was investigated using various electrochemical methods. An ${\alpha}$-phase in Ti alloy was transformed into a ${\beta}$-phase and martensite structure decreased as Nb content increased. The corrosion and passivation current density($+300mV_{SCE}$) decreased as Nb content increased, and thereby a stable passive film was formed on the Ti alloy. Potential of Ti-xNb alloy in the passive region increased, whereas, current density decreased with time from results of potentiostatic and galvanostatic tests. Also, the corrosion morphology showed the smaller pits as Nb content increased. Consequently, Ti alloy contained high Nb content showed a good resistance to pitting corrosion in 0.9% NaCl solution.

키워드

참고문헌

  1. M. Long, and H. J. Rack, Biomaterials, 19, 1621 (1998). https://doi.org/10.1016/S0142-9612(97)00146-4
  2. A. Majorell, S. Srivatsa, and R. C. Picu, Mater. Sci. Eng., A 326, 297 (2002). https://doi.org/10.1016/S0921-5093(01)01507-6
  3. S. H. Jang, H. C. Choe, Y. M. Ko, and W. A. Brantley, Thin Solid Films, 517, 5038 (2009). https://doi.org/10.1016/j.tsf.2009.03.166
  4. M. Niinomi, Mater. Sci. Eng., A 243, 231 (1998). https://doi.org/10.1016/S0921-5093(97)00806-X
  5. D. Q. Martins, M. E. P. Souza, D. C. Andrade, C. M. A. Freire, and R. Caram, J. Alloys Compd., 478, 111 (2009). https://doi.org/10.1016/j.jallcom.2008.11.030
  6. L. J. Xu, Y. Y. Chen, Z. G. Liu, and F. T. Kong, J. Alloys Compd., 453, 320 (2006).
  7. A. Choubey, R. balasubramaniam, and B. Basu, J. Alloys Compd., 381, 288 (2004). https://doi.org/10.1016/j.jallcom.2004.03.096
  8. Y. Mantai, and M. Tajima, Mater. Sci. Eng., 43-440A, 315 (2006).
  9. R. G. Zhang, and V. L. Acoff, Mater. Sci. Eng., 463A, 67 (2007).
  10. K. Wan, L. Gustavson, J. Dumbleton, Beta Titanium in 1990s, The Minerals and Materials Society, Warrandale, p. 49 (1993).
  11. H. S. Kim, S. H. Lim, I. D. Yeo, and W. Y. Kim, Mater. Sci. Eng., A 449, 322 (2007).
  12. J. J. Park, H. C. Choe, and Y. M. Ko, Mater. Sci. Forum, 539-543, 1270 (2007).
  13. H. C. Choe, Y. M. Ko, and W. A. Brantley, NSTI-Nanotech, 2, 744 (2007). https://doi.org/10.1038/nnano.2007.400
  14. A. Cremasco, W. R. Osorio, C. M. A. Freire, A. Garcia, and R. Caram, Electrochim. Acta, 53, 4867 (2008). https://doi.org/10.1016/j.electacta.2008.02.011
  15. S. A. souza, R. B. Manicardi, P. L. Ferrandini, C. R. M. Afonso, A. J. Ramirez, and R. Caram, J. Alloy Compd., 504, 330 (2010). https://doi.org/10.1016/j.jallcom.2010.05.134
  16. A. I. Karayan, S. W. Park, and K. M. Lee, Mater. Lett., 62, 1843 (2008). https://doi.org/10.1016/j.matlet.2007.10.028
  17. H. C. Choe, Y. M. Ko, and H. O. Park, Met. Mater. Int., 12, 365 (2006). https://doi.org/10.1007/BF03027555
  18. S. Frangini, and N.De. Cristofaro, Corros. Sci., 45, 2769 (2003). https://doi.org/10.1016/S0010-938X(03)00102-1