• Title/Summary/Keyword: corrosion morphology

Search Result 282, Processing Time 0.019 seconds

Magnesium Thin Films Possessing New Corrosion Resistance by RF Magnetron Sputtering Method

  • Lee, M.H.;Yun, Y.S.;Kim, K.J.;Moon, K.M.;Bae, I.Y.
    • Corrosion Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.148-153
    • /
    • 2004
  • Magnesium thin flims were prepared on cold-rolled steel substrates by RF magnetron sputtering technique. The influence of argon gas pressure and substrate bias voltage on their crystal orientation and morphology of the coated films were investigated by scanning electron microscopy (SEM) and X-ray diffraction, respectively. And the effect of crystal orientation and morphology of magnesium films on corrosion behaviors was estimated by measuring anodic polarization curves in deaerated 3%NaCl solution. From the experimental results, all the sputtered magnesium films showed obviously good corrosion resistance to compare with 99.99% magnesium target of the sputter-evaporation metal. Finally it was shown that the Corrosion-resistance of magnesium films can be improved greatly by controlling the crystal orientation and morphology with effective use of the plasma sputtering technique.

Formation Mechanism and Corrosion-Resistance of Magnesium Film by Physical Vapour Deposition Process (물리증착법에 의해 제작한 마그네슘 박막의 형성기구와 내식특성)

  • 이명훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.54-63
    • /
    • 1994
  • Mg thin films were prepared on SPCC(cold-rolled steel) substrates by vasuum evapoaration and ion-plating. The influence of argon gas pressure and substrates bias voltage on the crystal orientation and morphology of the film was determined by using X-ray diffraction and scanning electron micrography (SEM), respectively. And the effect of crystal orientation and morphology of the Mg thin films on corrosion behavior was estimated by measuring the anodic polarization curves in deaerated 3% NaCl solution. The crystal orientation of the Mg films deposited at high argon gas pressure exhibited a (002) preferred orientation, regardless of the substrate bias voltage. Film morphology changed from a columnar to a granular structure with the increase of argon gas pressure. The morphology of the films depended not only on argon gas pressure but also bias voltage ; i.e., the effect of increasing bias voltage was similar to that of decreasing argon gas pressure. The influences of argon gas pressure and bias voltage were explained by applying the adsorption inhibitor theory and the sputter theory. And also, this showed that the corrosion resistance of the Mg thin films can be changed by controlling the crystal orientaton and morphology.

  • PDF

Preparation of New Corrosive Resistive Magnesium Coating Films (고내식성의 신 마그네슘 코팅막 제작)

  • Lee, Myeong-Hun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.103-113
    • /
    • 1996
  • The properties of the deposited film depend on the deposition condition and these, in turn depend critically on the morphology and crystal orientation of the films. Therefore, it is important to clarify the nucleation occurrence and growth stage of the morphology and orientation of the film affected by deposition parameters, e.g. the gas pressure and bias voltage etc. In this work, magnesium thin flims were prepared on cold-rolled steel substrates by a thermo-eletron activation ion plating technique. The influence of nitrogen gas pressure and substrate bias voltage on their crystal orientation and morphology of the coated films were investigated by scanning electron microscopy (SEM) and X-ray diffraction, respectively. The diffraction peaks of magnesium film became less sharp and broadened with the increase of nitrogen gas pressure. With an increase in nitrogen gas pressure, flim morphology changed from colum nar to granular structure, and surface crystal grain-size decreased. The morphology of films depended not only on gas pressure but also on bias voltage, i.e., the effect of increasing bias voltage was similar to that of decreasing gas pressure. The effect of crystal orientation and morphology of magnesium films on corrosion behaviors was estimated by measuring anodic polarization curves in deaerated 3%NaCl solution. Magnesium, in general, has not a good corrosion resistance in all environments. However, these magnesium films prepared by changing nitrogen gas pressure showed good corrosion resistance. Among the films, magnesium films which exhibited granular structure had the highest corrosion resistance. The above phenomena can be explained by applying the effects of adsorption, occlusion and ion sputter of nitrogen gas.

  • PDF

Elastic local buckling behaviour of corroded cold-formed steel columns

  • Nie Biao;Xu Shanhua;Hu WeiCheng;Chen HuaPeng;Li AnBang;Zhang ZongXing
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.27-41
    • /
    • 2023
  • Under the long-term effect of corrosive environment, many cold-formed steel (CFS) structures have serious corrosion problems. Corrosion leads to the change of surface morphology and the loss of section thickness, which results in the change of instability mode and failure mechanism of CFS structure. This paper mainly investigates the elastic local buckling behavior of corroded CFS columns. The surface morphology scanning test was carried out for eight CFS columns accelerated corrosion by the outdoor periodic spray test. The thin shell finite element (FE) eigen-buckling analysis was also carried out to reveal the influence of corrosion surface characteristics, corrosion depth, corrosion location and corrosion area on the elastic local buckling behaviour of the plates with four simply supported edges. The accuracy of the proposed formulas for calculating the elastic local buckling stress of the corroded plates and columns was assessed through extensive parameter studies. The results indicated that for the plates considering corrosion surface characteristics, the maximum deformation area of local buckling was located at the plates with the minimum average section area. For the plates with localized corrosion, the main buckling shape of the plates changed from one half-wave to two half-wave with the increase in corrosion area length. The elastic local buckling stress decreased gradually with the increase in corrosion area width and length. In addition, the elastic local buckling stress decreased slowly when corrosion area thickness was relatively large, and then tends to accelerate with the reduction in corrosion area thickness. The distance from the corrosion area to the transverse and longitudinal centerline of the plate had little effect on the elastic local buckling stress. Finally, the calculation formula of the elastic local buckling stress of the corroded plates and CFS columns was proposed.

A Study on the Enhancement of Corrosion Resistance of Magnesium Alloy by Dry Plasma Process (건식플라즈마 표면처리법에 의한 마그네슘 합금의 내식특성 향상)

  • Yun, Yang-Sup
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.2
    • /
    • pp.155-160
    • /
    • 2011
  • In these days, there are increasing demands for weight reduction in many industrial fields including marine industries. Therefore, magnesium thin films for lightweight materials were prepared on magnesium alloy substrate. The influence of gas pressure and substrate bias voltages on the crystal orientation and morphology of the films was determined by using X-ray diffraction and FE-SEM, respectively. And the effect of crystal orientation and morphology of the magnesium thin films on corrosion behavior was estimated by measuring electro-chemical anodic polarization curves in deaerated 3% NaCl solution. From the results, corrosion resistance of Mg thin films was improved by controlling the crystal orientation and morphology of the films with effective use of plasma ion plating technique.

Improvement of Corrosion Resistance by Mg Films Deposited on Hot Dip Aluminized Steel using a Sputtering Method (용융알루미늄 도금 강판 상에 스퍼터링법으로 형성된 마그네슘 코팅막에 의한 내식성 향상)

  • Park, ae-Hyeok;Kim, Soon-Ho;Jeong, Jae-In;Yang, Ji-Hoon;Lee, Kyung-Hwang;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.224-230
    • /
    • 2018
  • In this study, Mg films were prepared on hot dip aluminized steel (HDA) by using a sputtering method as a high corrosion resistance coating. The corrosion resistance of the Mg films was improved by controlling the morphology and the crystal structure of films by adjusting the Ar gas pressure during the coating process. Anodic polarization measurement results confirm that the corrosion resistance of the Mg films was affected by surface morphology and crystal structure. The corrosion resistance of the Mg coated HDA specimen increased with decreasing crystal size of the Mg coating and it was also improved by forming a film with denser morphology. The crystal structure oriented at Mg(101) plane showed the best corrosion resistance among crystal planes of the Mg metals, which is attributed to its relatively low surface energy. Neutral salt spray test confirmed that corrosion resistance of HDA can be greatly improved by Mg coating, which is superior to that of HDG (hot dip galvanized steel). The reason for the improvement of the corrosion resistance of Mg films on hot dip aluminized steel was due to the barrier effect by the Mg corrosion products formed by the corrosion of the Mg coating layer.

The Corrosion Protection Performance of Al and Al-5%Mg Coatings Deposited on Steel Surface by Arc Thermal Metal Spray (강재 표면에 아크 금속 용사된 Al 및 Al-5 % Mg 코팅의 방지 성능)

  • Adnin, Raihana Jannat;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.140-141
    • /
    • 2021
  • Arc thermal spray process is widely used to protect the steel from corrosion and abrasion. In the present study, two different coatings i.e. Al and Al-5%Mg were used to compare their corrosion resistance performance and the effect of 5% Mg addition in the properties of deposited coating. The SEM results showed the more compact and less porous morphology of Al-5%Mg coating compared to Al. The corrosion resistance performance of both deposited coatings was studied in artificial ocean water with exposure periods and results are compared. The total impedance values of Al-5%Mg at 0.01 Hz exhibited highest with exposure periods might be attributed to the coating and corrosion products nature and morphology compared to Al coating.

  • PDF

Effects of Niobium Addition on the Corrosion Behavior of Ti Alloys in NaCl Solution (NaCl 용액에서 Nb 첨가가 Ti 합금의 부식 거동에 미치는 영향)

  • Kim, E.S.;Kim, W.G.;Choe, H.C.
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.34-39
    • /
    • 2013
  • In this study, the effect of niobium addition on the passivation behavior of Ti alloys in NaCl solution was investigated using various electrochemical methods. An ${\alpha}$-phase in Ti alloy was transformed into a ${\beta}$-phase and martensite structure decreased as Nb content increased. The corrosion and passivation current density($+300mV_{SCE}$) decreased as Nb content increased, and thereby a stable passive film was formed on the Ti alloy. Potential of Ti-xNb alloy in the passive region increased, whereas, current density decreased with time from results of potentiostatic and galvanostatic tests. Also, the corrosion morphology showed the smaller pits as Nb content increased. Consequently, Ti alloy contained high Nb content showed a good resistance to pitting corrosion in 0.9% NaCl solution.

Flow-Accelerated Corrosion Analysis for Heat Recovery Steam Generator in District Heating System (지역난방 배열 회수 보일러의 유동 가속 부식 원인 고찰)

  • Hong, Minki;Chae, Hobyung;Kim, Youngsu;Song, Min Ji;Cho, Jeongmin;Kim, Woo Cheol;Ha, Tae Baek;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.11-15
    • /
    • 2019
  • Severe wall thinning is found on the tube of a low-pressure evaporator(LPEVA) module that is used for a heat recovery steam generator(HRSG) of a district heating system. Since wall thinning can lead to sudden failure or accidents that lead to shutdown of the operation, it is very important to investigate the main mechanism of the wall thinning. In this study, corrosion analysis associated with a typical flow-accelerated corrosion(FAC) is performed using the corroded tube connected to an upper header of the LPEVA. To investigate factors triggering the FAC, the morphology, composition, and phase of the corroded product of the tube are examined using optical microscopy, scanning electron microscopy combined with energy dispersive spectroscopy, and x-ray diffraction. The results show that the thinnest part of the tube is in the region where gas directly contacts, revealing the typical orange peel type of morphology frequently found in the FAC. The discovery of oxide scales containing phosphate indicates that phosphate corrosion is the main mechanism that weakens the stability of the protective magnetite film and the FAC accelerates the corrosion by generating the orange peel type of morphology.

Fabrication of Hydrophobic Surface by Controlling Micro/Nano Structures Using Ion Beam Method (이온빔을 이용한 표면 미세구조 제어를 통한 발수 표면 제조)

  • Kim, Dong-Hyeon;Lee, Dong-Hoon
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.123-128
    • /
    • 2018
  • The fabrication of a controlled surface is of great interest because it can be applied to various engineering facilities due to the various properties of the surface, such as self-cleaning, anti-bio-fouling, anti-icing, anti-corrosion, and anti-sticking. Controlled surfaces with micro/nano structures were fabricated using an ion beam focused onto a polypropylene (PP) surface with a fluoridation process. We developed a facile method of fabricating hydrophobic surfaces through ion beam treatment with argon and oxygen ions. The fabrication of low surface energy materials can replace the current expensive and complex manufacturing process. The contact angles (CAs) of the sample surface were $106^{\circ}$ and $108^{\circ}$ degrees using argon and oxygen ions, respectively. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy were used to determine the chemical composition of the surface. The morphology change of the surfaces was observed by scanning electron microscopy (SEM). The change of the surface morphology using the ion beam was shown to be very effective and provide enhanced optical properties. It is therefore expected that the prepared surface with wear and corrosion resistance might have a considerable potential in large scale industrial applications.