DOI QR코드

DOI QR Code

Bitumen Emulsion Separation by Chemical Demulsification and Electrical Treatment

항유화제 및 전기장을 이용한 물/비튜멘 에멀전의 분리특성

  • Kim, Sang Kyum (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Yoon, Sung Min (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Sang Hun (Department of Chemical Engineering, Chungnam National University) ;
  • Bae, Wisup (Department of Energy and Mineral Resources Engineering, Sejong University) ;
  • Rhee, Young Woo (Graduate School of Green Energy Technology, Chungnam National University)
  • 김상겸 (충남대학교 녹색에너지기술전문대학원) ;
  • 윤성민 (충남대학교 화학공학과) ;
  • 이상헌 (충남대학교 화학공학과) ;
  • 배위섭 (세종대학교 에너지자원공학과) ;
  • 이영우 (충남대학교 녹색에너지기술전문대학원)
  • Received : 2013.01.11
  • Accepted : 2013.03.14
  • Published : 2013.06.28

Abstract

In this study, chemical demulsification and electrical treatment methods were investigated for improving the efficiency of water separation from a water/bitumen emulsion. Two types of motor oils (GS Caltex, Deluxe Gold V 7.5 W/30 and, Hyundai gear oil 85 W/140) were used as model oils in basic experiments to investigate the effects of a demulsifier on water/oil emulsion separation. Chemical demulsifiers showing good water separation performance were then used in asphalt emulsion and bitumen emulsion separation trials. Maleic anhydride and e-caprolactam were shown to be good oil soluble demulsifiers and 2-ethylhexyl acrylate and acrylic acid were effective as water soluble demulsifiers. Based on the results obtained in basic experiments, these four demulsifiers were used in further asphalt emulsion experiments. The oil soluble demulsifiers showed higher water separation efficiencies than the water soluble demulsifiers. To investigate the water separation efficiency using a combined chemical and electrical treatment method, the water/bitumen emulsion was separated with the electrical oil treatment apparatus after a chemical demulsifier had been added to it.

본 연구에서는 항유화제와 전기장을 이용하여 물/비튜멘 에멀전에서의 효과적인 물 분리 방법에 대한 실험을 진행하였다. 물/비튜멘 에멀전의 물 분리 효율을 측정하기위한 기초실험을 진행하였으며, 기초실험에서는 비튜멘의 모사를 위해 모터 오일(GS Caltex, Deluxe Gold V 7.5 W/30, Hyundai gear oil 85 W/140)을 사용하였다. 기초실험을 통해 높은 물 분리 효율을 갖는 항유화제를 선택하였으며, 선택된 항유화제를 사용해 아스팔트 및 비튜멘 에멀전에서의 분리실험을 진행하였다. 지용성 항유화제 중에서는 말레산무수물(maleic anhydride)과 e-카프로락탐(e-caprolactam)이 높은 분리 효율을 보였으며, 수용성 항유화제는 2-에틸헥실 아크릴레이트(2-ethylhexyl acrylate)와 아크릴산(acrylic acid)이 높은 분리 효율을 보여주었다. 앞선 기초실험을 통해 얻어진 결과를 바탕으로 지용성 항유화제 2종, 수용성 항유화제 2종을 선택하여 아스팔트 에멀전에서의 분리실험을 진행하였다. 또한, 실험실규모의 전기장을 이용하여 오일처리기(oiltreater)를 설계, 제작하였으며 제작된 장치와 항유화제를 연계하여 에멀전의 분리효율을 실험하였다.

Keywords

References

  1. Greene, D. L., Hopson, J. L., and Li, J., "Have We Run Out of Oil Yet? Oil Peaking Analysis from an Optimist's Perspective," Energy Policy, 34(5), 515-531 (2006). https://doi.org/10.1016/j.enpol.2005.11.025
  2. Mejean, A., and Hope, C., "Modelling the Costs of Nonconventional Oil: A Case Study of Canadian Bitumen," Energy Policy, 36(11), 4205-4216 (2008). https://doi.org/10.1016/j.enpol.2008.07.023
  3. Park, Y. K., Choi, W. C., Jeong, S. Y., and Lee, C. W., "High Valu-added Technology of Oil Sand," Korean Chem. Eng. Res., 45(2), 109-116 (2007).
  4. Frimpong, S., Hu, Y. and Awuah-offei, K., "Mechanics of Cable Shovel-formation Interactions in Surface Mining Excavations," J. Terramech., 42(1), 15-33 (2005). https://doi.org/10.1016/j.jterra.2004.06.002
  5. Czarnecki, J., Radoev, B., Schramm, L. L., and Slavchev, R., "On the Nature of Athabasca Oil Sands," Adv. Colloid Interface Sci., 114-115, 53-60 (2005). https://doi.org/10.1016/j.cis.2004.09.009
  6. Barillas, J. L. M., Dutra, T. V., and Mata, W., "Reservoir and Operational Parameters Influence in SAGD Process," J. Pet. Eng., 54(1-2), 34-42 (2006). https://doi.org/10.1016/j.petrol.2006.07.008
  7. Butler, R. M., "Steam-assisted Gravity Drainage Concept : Development, Performance and Future," J. Can. Pet. Technol., 33(2), 44-50 (1994). https://doi.org/10.2118/94-02-05
  8. Novales, B., Papineau, P., Sire, A., and Axelos, M. A. V., "Characterization of Emulsions and Suspensions by Video Image Analysis," Colloid Surf. A; Physicochem. Eng. Asp., 221(1-3), 81-89 (2003). https://doi.org/10.1016/S0927-7757(03)00102-X
  9. Lissant, K. J., Demulsification Industrial Application, Marcel Dekker, NewYork, 1983, pp. 2.
  10. Jiangying, W., Yuming, Tadeusz, D., and Hassan, H., "Effect of EO and PO Positions in Nonionic Surfactants on Surfactant Properties and Demulsification Performance," Colloid Surf. A: Physcochem. Eng. Asp., 252(1), 79-85 (2005). https://doi.org/10.1016/j.colsurfa.2004.09.034
  11. Park, K., Han, S. D., Noh, S. Y., Bae, W., and Rhee, Y. W., "Characteristics of Separation of Water/Bitumen Emulsion by Chemical Demulsifier," Clean Tech., 15(1), 54-59 (2009).
  12. Kukizaki, M., and Goto, M., "Demulsification of Water-in-Oil Emulsions by Permeation through Shirasu-Porous-Glass (SPG) Membranes," J. Membrane Sci., 322(1), 196-203 (2008). https://doi.org/10.1016/j.memsci.2008.05.029
  13. Kwon, W. T., Park, K., Han, S. D., Yoon, S. M., Kim, J. Y., Bae, W., and Rhee, Y. W., "Investigation of Water Separation from Water-in-oil Emulsion Using Electric Field," J. Ind. Eng. Chem., 16(5), 684-687 (2010). https://doi.org/10.1016/j.jiec.2010.07.018
  14. Chen, C. M., Lu, C. H., Chang, C. H., Yang, Y. M., and Maa, J. R., "Influence of pH on the Stability of Oil-in-water Emulsions Stabilized by a Splittable Surfactant," Colloid Surf. A: Physcochem. Eng. Asp., 170(2-3), 173-179 (2000). https://doi.org/10.1016/S0927-7757(00)00480-5
  15. Stachurski, J., and Michalek, M., "The Effect of the ${\zeta}$ Potential on the Stability of a Non-polar Oil-in-Water Emulsion," J. Colloid Interface Sci., 184(2), 433-436 (1996). https://doi.org/10.1006/jcis.1996.0637