DOI QR코드

DOI QR Code

Analysis of Car Following Model of Adaptive Cruise Controlled Vehicle Considering the Road Conditions According to Weather Circumstance

기상상황에 따른 노면상태를 고려한 첨단차량 추종거동 모형의 분석

  • 김태욱 (부경대학교 공간정보시스템공학과) ;
  • 배상훈 (부경대학교 공간정보시스템공학과)
  • Received : 2013.01.10
  • Accepted : 2013.05.09
  • Published : 2013.06.30

Abstract

The car-following model is one of core models in Advanced Vehicle & Highway Systems (AVHS). The car-following model has been developed in aspects such as human factor and reduction error rates. However, the consideration of safety depending on weather condition has not been completed yet. In this paper, therefore, changes of driving condition for car-following due to different road condition were dealt with, and optimal safety distance corresponding to road condition such as dry, wet and snowy were computed. The GMIT(GM Model with Instantaneous T) model was picked over for simulation of adaptive cruise control applied the suggested optimal safety distance. As the results, the 1.7 times longer safety distance was required for wet road condition than dry road condition, and the 5.6 times longer safety distance was required for snowy road condition.

첨단차량 및 도로시스템 (AVHS)의 가장 핵심적인 모형인 추종거동 모형은 인간공학적 요소를 반영하거나 가속도 오차율을 줄이는 등 다양한 측면에서 개발되고 있다. 하지만 첨단차량 추종거동과 관련하여 기상상황을 고려한 안전성에 대한 연구는 미미한 실정이다. 따라서 본 논문에서는 기상상황에 따른 노면상태와 차량 주행행태의 관계를 분석하여 첨단차량 추종거동 시 차량의 주행행태 변화를 비교하였고, 이에 따른 노면상태 별 최적안전거리를 산정하였다. 노면상태는 기상상황에 따라 다양하게 분류 되지만, 본 논문에서는 건조, 습윤, 적설 노면상태로 분류하고 이에 따른 마찰계수를 추종거동 모형인 GMIT 모형에 적용하였다. 제안된 추종거동 모형의 시뮬레이션 결과, 기상상황별 노면상태에 따라 추종차량의 속도와 가속도 및 차간거리가 변화되었다. 또한 변화하는 노면상태에 따라 달라지는 차간거리를 이용하여 기상상황에 따른 노면상태 별 최적안전거리를 산정하였다. 습윤노면상태에서의 최적안전거리는 건조노면상태에 비해 약 1.7배가 늘어났으며, 적설노면상태에서의 최적안전거리는 건조노면상태에 비해 약 5.6배가 늘어났다.

Keywords

References

  1. H. J. Park, "Development of car following model of adaptive cruise controlled vehicle considering human factors in ubiquitous traffic," Master Dissertation, Pukyong national university, 2008.
  2. S. H. Bae, "Optimal safety spacing for the car following of adaptive cruise controlled vehicle," Korean society of civil engineers, vol. 27, no. 1D, pp.1-7, Jan. 2007.
  3. H. J. Jung, "Development of integrated simulation model for intelligent vehicle control under ubiquitous computing environment," Master Dissertation, Pukyong national university, 2006.
  4. J. H. Lee, H. J. Cho, "A study on the characters of traffic accidents in the foul weather according to weather condition," The 30th KSCE Annual Conference, pp.3867-3870, Gangwon Province, Korea, Oct. 2004.
  5. Y. I. Lee, S. S. Choi, "Estimation of a car-following model for microscopic simulation model based on GM 5th model," Korean society of transportation, vol. 18, no. 6, pp.47-61, Dec. 2000.
  6. B. S. Cheon, Road engineering, Sae-ron(새론), 2nd ED., pp.132-136, 1998.
  7. Paul A. Tipler, Physics, ChungMoonGak, 4th ED., pp.81-86, 1999.
  8. C. W. Do, The principles of transportation engineering(1st volume), ChungMoonGak, 3rd ED., pp.25-33, 2009.
  9. Ibrahim, A. T, Hall, F.L, "Effect of adverse weather conditions on speed-occupancy relationships," Transportation Research Board, vol. 1457, pp.184-191, 1994.
  10. Michael Kyte, Zaher Khatib, Patrick Shannon, and Fred Kitchener, "Effect of environmental factors on free-flow speed," Transportation Research Circular presented at the Fourth National Symposium on Hightway Capacity, pp.108-119, Maui, Hawaii, pp.108-119, June. 2000.
  11. Prakash Ranjitkar, "Experimental analysis of car following dynamics and traffic stability," Transportation Research Record, Journal of the Transportation Research Board, vol. 1934, pp.22-32, 2005. https://doi.org/10.3141/1934-03
  12. Vincenzo Punzo, Fulvio Simonelli, "Analysis and Comparison of Microscopic Traffic Flow Models with Real Traffic Microscopic Data," Transportation Research Record, Journal of the Transportation Research Board, vol. 1934, pp.53-63, 2005. https://doi.org/10.3141/1934-06
  13. Kaveh Bevrani, Edwaad Chung, Marc Miska, "Evaluation of the GHR car following model for traffic safety studies," In Proceedings of the 25th ARRB Conference. ARRB Group Ltd, pp.1-11, Perth, W. Australia, Sep. 2012.
  14. Henry, J.J., "Evaluation of Pavement Friction Characteristics," NCHRP Synthesis 291, National Cooperative Highway Research Program (NCHRP), Washington, D.C. 2000.
  15. Al-Qadi, I.L., Loulizi, A., Flintsch, G.W., Roosevelt, D.S., Decker, R., Wambold, J.C. & Nixon, W.A., "Feasibility of Using Friction Indicators to Improve Winter Maintenance Operations and Mobility", Transportation Research Voard of the National Academies, NCHRP(National Cooperative Highway Research Program) Web Document 53 (Project 6-14) : Contractor's Final Report., 2002.
  16. Helsinki, "Winter maintenance policy", Finnish Road Administation, 2008.