DOI QR코드

DOI QR Code

수분 함유량 및 지하 구조물 깊이에 따른 고고도 전자기파(HEMP) 투과 현상 분석

Analysis of Penetration Phenomenon of High Altitude Electromagnetic Pulse into Buried Facilities with Various Moisture Content and Depth

  • 강희도 (연세대학교 전기전자공학과) ;
  • 오일영 (연세대학교 전기전자공학과) ;
  • 육종관 (연세대학교 전기전자공학과)
  • Kang, Hee-Do (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Oh, Il-Young (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Yook, Jong-Gwan (Department of Electrical and Electronic Engineering, Yonsei University)
  • 투고 : 2013.05.06
  • 심사 : 2013.05.31
  • 발행 : 2013.06.30

초록

본 논문에서는 지하 다층 구조물로 경사 입사하는 고고도 전자기파의 투과 현상을 위한 전자기적 모델링 기법과 편파 및 임계각을 고려한 모델링 기법을 제안하였다. 고고도 전자기파의 전송 채널인 지하 다층 구조물은 측정된 복소 유전율을 바탕으로 지하 터널층으로 투과된 고고도 전자기파를 정량적으로 계산하였으며, 입사파의 편파와 임계각을 고려하여 투과 현상을 분석하여, 평행 편파를 갖는 고고도 전자기파가 수직 편파를 갖는 경우보다 더욱 큰 투과 현상이 발생함을 확인하였다. 또한, 수직 입사의 경우, 편파에 상관없이 약 5.6 kV/m의 전기장이 투과함을 확인하였으며, 지하 다층 구조물에서의 임계각인 38도 근처에서 매우 급격한 전기장의 감쇠를 확인하였다. 이를 바탕으로, 지하 다층 구조물을 구성하는 토양층의 수분 함유량 변화 및 각 층의 깊이에 따른 고고도 전자기파의 투과 현상을 정량적으로 분석하여, 지하 터널층의 방호 설계 시 물리적인 깊이에 대한 고려뿐만이 아닌 추가적인 방호 설계에 대한 고려가 불가피함을 소개하였다.

In this paper, a formulation for obliquely incident electromagnetic wave has been presented for an analysis of highpower electromagnetic pulse penetration into multilayered dispersive media. Based on generalized models of measured dielectric constants and propagation channels reflecting the Earth's general features, the propagation phenomenon of the obliquely incident early-time(E1) high altitude electromagnetic pulse(HEMP) is analyzed. In addition, the polarization and critical angle are also considered. It is found that the total reflection occurs at an incident angle of about 38 degrees at the soil-rock interface, and that the parallel-polarized E1 HEMP penetrates better than the perpendicular-polarized one. The peak level of the penetrating electric field is found to be 5.6 kV/m at normal incidence, regardless of the type of polarization, and E1 HEMP is greatly reduced near the critical angle. Moreover, the penetrating E1 HEMP is analyzed as a variation of moisture content and depth of materials, resulting E1 HEMP could be useful in determining the levels of shielding required for buried facilities.

키워드

참고문헌

  1. Description of HEMP Environment-Radiated Disturbance, IEC standard 61000-2-9, 1996.
  2. J. S. Foster, E. Gjelde, R. J. Hermann, H. M. Kluepfel, G. K. Soper, L. L. Wood, J. B. Woodard, and W. Graham, Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse Attack, vol. I: Executive Report, Apr. 2004.
  3. Y. R. Samii, "Electromagnetic pulse coupling through an aperture into a two-parallel-plate region", IEEE Trans. Electromagn. Compat., vol. EMC-20, no. 3, pp. 436-442, 1978. https://doi.org/10.1109/TEMC.1978.303676
  4. F. M. Tesche, P. R. Barnes, "A multi- conductor model for determining the response of power transmission and distribution lines to a high altitude electromagnetic pulse(HEMP)", IEEE Trans. Power Deliv., vol. 4, no. 3, pp. 1955-1964, 1989. https://doi.org/10.1109/61.32695
  5. E. Lomberdini, G. Cariani, "EMC/NEMP technology from military applications to telecommunications", International Telecomm. Energy Conference, pp. 1-10, Oct. 1989.
  6. D. E. Thomas, C. M. Wiggins, T. M. Salas, and P. R. Barnes, "On the HEMP environment for protective relays", IEEE Trans. Electromagn. Compat., vol. 9, no. 1, pp. 471-479, 1994.
  7. H. Y. Chen, I. Y. Tam, and Y. J. Hwang, "NEMP fields inside a metallic container with an aperture in one wall", IEEE Trans. Electromagn. Compat., vol. 37, no. 1, pp. 99-105, 1995. https://doi.org/10.1109/15.350248
  8. M. Ianoz, B. I. C. Nicoara, and W. Radasky, "Modeling of an EMP conducted environment", IEEE Trans. Electromagn. Compat., vol. 38, no. 3, pp. 400-413, 1996. https://doi.org/10.1109/15.536070
  9. V. M. Greetsai, A. H. Kozlovsky, V. M. Kuvshinnikkov, V. M. Loborev, Y. V. Parfenov, O. A. Tarasov, and L. N. Zdoukhov, "Response of long lines to nuclear high-altitude electromagnetic pulse(HEMP)", IEEE Trans. Electromagn. Compat., vol. 40, no. 4, pp. 348-354, 1998. https://doi.org/10.1109/15.736221
  10. C. A. Balanis, Advanced Engineering Electromagnetics, John Wiley & Sons, NY, 1989.
  11. R. W. P. King, C. W. Harrison JR., "The transmission of electromagnetic waves and pulses into the earth", Journal of Applied Physics, vol. 39, no. 9, pp. 4444-4452, 1968. https://doi.org/10.1063/1.1656989
  12. 강희도, 오일영, 김정호, 육종관, "다층 지하 구조물로의 고고도 전자기파(HEMP) 커플링 현상에 대한 전자기적 모델링", 한국전자파학회논문지, 23(2), pp. 392-401, 2012년 3월. https://doi.org/10.5515/KJKIEES.2012.23.3.392
  13. H. D. Kang, I. Y. Oh, T. H. Chung, and J. G. Yook, "Analytic and numerical modeling of normal penetration of early-time high altitude electro-magnetic pulse into dispersive underground multilayer structures", IEICE Trans. Commun., submitted.
  14. H. D. Kang, I. Y. Oh, and J. G. Yook, "Analytic modeling of oblique penetration of early-time high altitude electromagnetic pulse into dispersive underground multilayer structures", J. Electromagn. Waves Appl., accepted.
  15. S. H. Hall, H. L. Heck, Advanced Signal Integrity for High-Speed Digital Design, Wiley, NJ, 2009.
  16. D. K. Cheng, Field and Wave Electromagnetics, 2nd Edition, Addison Wesley, MA, 1989.
  17. M. Oh, Y. Kim, and J. Park, "Factors affecting the complex permittivity spectrum of soil at a low frequency range of 1 kHz-10 MHz", Environment Geology, vol. 51, pp. 821-833, Jul. 2006. https://doi.org/10.1007/s00254-006-0362-6
  18. J. F. Vesecky, W. A. Nierenberg, and A. M. Despain, Tunnel Detection, SRI International, 1980.
  19. http://www.mathworks.co.kr/