DOI QR코드

DOI QR Code

Performance Prediction of Landing Gear Considering Uncertain Operating Parameters

운용 파라미터의 불확실성을 고려한 착륙장치 완충성능 해석

  • Received : 2012.12.28
  • Accepted : 2013.04.03
  • Published : 2013.07.01

Abstract

The performance estimation of a landing gear with uncertain parameters is presented. In actual use, many parameters can have certain degrees of variations that affect the energy absorbing performance. For example, the shock strut gas pressure, oil volume, tire pressure, and temperature can deviate from their nominal values. The objective function in this study is the ground reaction during touchdown, which is a function of the abovementioned parameters and time. To consider the uncertain properties, convex modeling and interval analysis are used to calculatethe objective function. The numerical results show that the ground reaction characteristics are quite different from those of the deterministic method. The peak load, which affects the efficiency and structural integrity, is increases considerably when the uncertainties are considered. Therefore, it is important to consider the uncertainties, and the proposed methodology can serve as an efficient method to estimate the effect of such uncertainties.

본 연구는 운용 파라미터의 불확실성을 고려한 착륙장치 완충성능 해석 기법을 제시한다. 실제 운용 환경에서 완충성능에 영향을 미치는 많은 파라미터는 어느 정도의 불확실성을 가지게 되는데, 완충장치 가스 압력과 오일 체적, 타이어 압력, 외부 온도 등을 예로 들 수 있다. 본 연구에서는 Convex Modeling 과 Interval Analysis 기법을 적용하여, 이러한 불확실성이 착륙 시의 지면 반력에 미치는 효과를 해석하였다. 불확실한 파라미터를 고려할 경우, 완충효율 및 구조 건전성에 중요한 영향을 주는 Peak load 가 Deterministic analysis 의 결과보다 크게 증가하였다. 안전성과 신뢰성의 확보를 위해서는 이러한 불확실성을 반영하는 것이 필요하며, 제시한 방법은 이를 효율적으로 처리할 수 있음을 보여준다.

Keywords

References

  1. Wall, F. J. and Bucher, C. G., 1987, "Sensitivity of Expected Exceedance Rate of SDOF-System Response to Statistical Uncertainties of Loading and System Parameters," Probabilistic Engineering Mechanics, Vol. 2, pp. 138-146. https://doi.org/10.1016/0266-8920(87)90004-X
  2. Ben-Haim, Y. and Elishakoff, I., 1990, Convex Models of Uncertainty in Applied Mechanics, Elsevier, Amsterdam.
  3. Elishakoff, I. and Colombi, P., 1993, "Combination of Probabilistic and Convex Models of Uncertainty When Scarce Knowledge Is Present on Acoustic Excitation Parameters," Computer Methods in Applied Mechanics and Engineering, Vol. 104, pp. 187-209. https://doi.org/10.1016/0045-7825(93)90197-6
  4. Elishakoff, I., Haftka, R. T. and Fang, J., 1994, "Structural Design Under Bounded Uncertainty-Optimization with Anti-optimization," Computers and Structures, Vol. 53, pp. 1401-1405. https://doi.org/10.1016/0045-7949(94)90405-7
  5. Kim, T. U. and Sin, H. C., 2001, "Optimal Design of Composite Laminated Plates with the Discreteness in Ply Angles and Uncertainty in Material Properties Considered," Computers and Structures, Vol. 79, pp. 2501-2509. https://doi.org/10.1016/S0045-7949(01)00133-X
  6. Qiu, Z., 2005, "Convex Models and Interval Analysis Method to Predict the Effect of Uncertain-butbounded Parameters on the Buckling of Composite Structures," Computer Methods in Applied Mechanics and Engineering, Vol. 194, pp. 2175-2189. https://doi.org/10.1016/j.cma.2004.07.018
  7. Qiu, Z. and Elishakoff, I., 2001, "Anti-Optimization Technique-A Generalization of Interval Analysis for Nonprobabilistic Treatment of Uncertainty," Chaos, Solitons and Fractals, Vol. 12, pp. 1747-1759. https://doi.org/10.1016/S0960-0779(00)00102-8
  8. McWilliam, S., 2001, "Anti-Optimisation of Uncertain Structures Using Interval Analysis," Computers and Structures, Vol. 79, pp. 421-430. https://doi.org/10.1016/S0045-7949(00)00143-7
  9. Penmetsa, R. C. and Grandhi, R, V., 2002, "Efficient Estimation of Structural Reliability for Problems with Uncertain Intervals," Computers and Structures, Vol. 80, pp. 1103-1112. https://doi.org/10.1016/S0045-7949(02)00069-X
  10. Rao, S. S. and Berke, L., 1997, "Analysis of Uncertain Structural Systems Using Interval Analysis," AIAA Journal, Vol. 35, pp. 727-735. https://doi.org/10.2514/2.164
  11. Currey, N. S., 1988, Aircraft Landing Gear Design: Principles and Practices, AIAA, Washington, D.C.
  12. http://www.vi-grade.com.