DOI QR코드

DOI QR Code

Innate immune response to oral bacteria and the immune evasive characteristics of periodontal pathogens

  • Ji, Suk (Department of Periodontology, Korea University Anam Hospital) ;
  • Choi, Youngnim (Department of Oral Microbiology and Immunology, Dental Research Institute, Seoul National University School of Dentistry)
  • 투고 : 2012.12.24
  • 심사 : 2013.01.18
  • 발행 : 2013.02.28

초록

Periodontitis is a chronic inflammation of periodontal tissue caused by subgingival plaque-associated bacteria. Periodontitis has long been understood to be the result of an excessive host response to plaque bacteria. In addition, periodontal pathogens have been regarded as the causative agents that induce a hyperinflammatory response from the host. In this brief review, host-microbe interaction of nonperiodontopathic versus periodontopathic bacteria with innate immune components encountered in the gingival sulcus will be described. In particular, we will describe the susceptibility of these microbes to antimicrobial peptides (AMPs) and phagocytosis by neutrophils, the induction of tissue-destructive mediators from neutrophils, the induction of AMPs and interleukin (IL)-8 from gingival epithelial cells, and the pattern recognition receptors that mediate the regulation of AMPs and IL-8 in gingival epithelial cells. This review indicates that true periodontal pathogens are poor activators/suppressors of a host immune response, and they evade host defense mechanisms.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea

참고문헌

  1. Nishihara T, Koseki T. Microbial etiology of periodontitis. Periodontol 2000 2004;36:14-26. https://doi.org/10.1111/j.1600-0757.2004.03671.x
  2. Dye BA. Global periodontal disease epidemiology. Periodontol 2000 2012;58:10-25. https://doi.org/10.1111/j.1600-0757.2011.00413.x
  3. Blaizot A, Vergnes JN, Nuwwareh S, Amar J, Sixou M. Periodontal diseases and cardiovascular events: meta-analysis of observational studies. Int Dent J 2009;59:197-209.
  4. Manjunath BC, Praveen K, Chandrashekar BR, Rani RM, Bhalla A. Periodontal infections: a risk factor for various systemic diseases. Natl Med J India 2011;24:214-9.
  5. Page RC. The role of inflammatory mediators in the pathogenesis of periodontal disease. J Periodontal Res 1991;26(3 Pt 2):230-42. https://doi.org/10.1111/j.1600-0765.1991.tb01649.x
  6. Matthews JB, Wright HJ, Roberts A, Cooper PR, Chapple IL. Hyperactivity and reactivity of peripheral blood neutrophils in chronic periodontitis. Clin Exp Immunol 2007;147:255-64.
  7. Shaddox L, Wiedey J, Bimstein E, Magnuson I, Clare-Salzler M, Aukhil I, et al. Hyper-responsive phenotype in localized aggressive periodontitis. J Dent Res 2010;89:143-8. https://doi.org/10.1177/0022034509353397
  8. Feng Z, Weinberg A. Role of bacteria in health and disease of periodontal tissues. Periodontol 2000 2006;40:50-76. https://doi.org/10.1111/j.1600-0757.2005.00148.x
  9. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 2005;43:5721-32. https://doi.org/10.1128/JCM.43.11.5721-5732.2005
  10. Socransky SS, Haffajee AD. Periodontal Infections. In: Lindhe J, Karring T, Lang NP, editors. Clinical periodontology and implant dentistry. 5th ed. Oxford: Blackwell Munksgaard; 2008. p.207-67.
  11. Swindle EJ, Collins JE, Davies DE. Breakdown in epithelial barrier function in patients with asthma: identification of novel therapeutic approaches. J Allergy Clin Immunol 2009;124:23-34. https://doi.org/10.1016/j.jaci.2009.05.037
  12. Franke WW, Pape UF. Diverse types of junctions containing tight junction proteins in stratified mammalian epithelia. Ann N Y Acad Sci 2012;1257:152-7. https://doi.org/10.1111/j.1749-6632.2012.06504.x
  13. Hatakeyama S, Yaegashi T, Oikawa Y, Fujiwara H, Mikami T, Takeda Y, et al. Expression pattern of adhesion molecules in junctional epithelium differs from that in other gingival epithelia. J Periodontal Res 2006;41:322-8. https://doi.org/10.1111/j.1600-0765.2006.00875.x
  14. Dale BA, Fredericks LP. Antimicrobial peptides in the oral environment: expression and function in health and disease. Curr Issues Mol Biol 2005;7:119-33.
  15. Brown KL, Hancock RE. Cationic host defense (antimicrobial) peptides. Curr Opin Immunol 2006;18:24-30. https://doi.org/10.1016/j.coi.2005.11.004
  16. Marshall RI. Gingival defensins: linking the innate and adaptive immune responses to dental plaque. Periodontol 2000 2004;35:14-20. https://doi.org/10.1111/j.0906-6713.2004.003568.x
  17. Chung WO, Dommisch H, Yin L, Dale BA. Expression of defensins in gingiva and their role in periodontal health and disease. Curr Pharm Des 2007;13:3073-83. https://doi.org/10.2174/138161207782110435
  18. Defraia E, Marinelli A. Oral manifestations of congenital neutropenia or Kostmann syndrome. J Clin Pediatr Dent 2001;26:99-102.
  19. Pütsep K, Carlsson G, Boman HG, Andersson M. Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet 2002;360:1144-9. https://doi.org/10.1016/S0140-6736(02)11201-3
  20. Page RC. Gingivitis. J Clin Periodontol 1986;13:345-59. https://doi.org/10.1111/j.1600-051X.1986.tb01471.x
  21. Dixon DR, Bainbridge BW, Darveau RP. Modulation of the innate immune response within the periodontium. Periodontol 2000 2004;35:53-74. https://doi.org/10.1111/j.0906-6713.2004.003556.x
  22. Yang D, Biragyn A, Hoover DM, Lubkowski J, Oppenheim JJ. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol 2004;22:181-215. https://doi.org/10.1146/annurev.immunol.22.012703.104603
  23. Carrassi A, Abati S, Santarelli G, Vogel G. Periodontitis in a patient with chronic neutropenia. J Periodontol 1989;60: 352-7. https://doi.org/10.1902/jop.1989.60.6.352
  24. Cainciola LJ, Genco RJ, Patters MR, McKenna J, van Oss CJ. Defective polymorphonuclear leukocyte function in a human periodontal disease. Nature 1977;265:445-7. https://doi.org/10.1038/265445a0
  25. Delcourt-Debruyne EM, Boutigny HR, Hildebrand HF. Features of severe periodontal disease in a teenager with Chédiak-Higashi syndrome. J Periodontol 2000;71:816-24. https://doi.org/10.1902/jop.2000.71.5.816
  26. Inaloz HS, Harman M, Akdeniz S, Inaloz SS, Isik AG. Atypical familial Papillon-Lefevre syndrome. J Eur Acad Dermatol Venereol 2001;15:48-50. https://doi.org/10.1046/j.1468-3083.2001.00121.x
  27. Perez HD, Kelly E, Elfman F, Armitage G, Winkler J. Defective polymorphonuclear leukocyte formyl peptide recep-tor(s) in juvenile periodontitis. J Clin Invest 1991;87:971-6. https://doi.org/10.1172/JCI115105
  28. Raber-Durlacher JE, Epstein JB, Raber J, van Dissel JT, van Winkelhoff AJ, Guiot HF, et al. Periodontal infection in cancer patients treated with high-dose chemotherapy. Support Care Cancer 2002;10:466-73. https://doi.org/10.1007/s00520-002-0346-3
  29. Brissette CA, Simonson LG, Lukehart SA. Resistance to human beta-defensins is common among oral treponemes. Oral Microbiol Immunol 2004;19:403-7. https://doi.org/10.1111/j.1399-302x.2004.00177.x
  30. Guthmiller JM, Vargas KG, Srikantha R, Schomberg LL, Weistroffer PL, McCray PB Jr, et al. Susceptibilities of oral bacteria and yeast to mammalian cathelicidins. Antimicrob Agents Chemother 2001;45:3216-9. https://doi.org/10.1128/AAC.45.11.3216-3219.2001
  31. Joly S, Maze C, McCray PB Jr, Guthmiller JM. Human beta-defensins 2 and 3 demonstrate strain-selective activity against oral microorganisms. J Clin Microbiol 2004;42: 1024-9. https://doi.org/10.1128/JCM.42.3.1024-1029.2004
  32. Nishimura E, Eto A, Kato M, Hashizume S, Imai S, Nisizawa T, et al. Oral streptococci exhibit diverse susceptibility to human beta-defensin-2: antimicrobial effects of hBD-2 on oral streptococci. Curr Microbiol 2004;48:85-7. https://doi.org/10.1007/s00284-003-4108-3
  33. Ouhara K, Komatsuzawa H, Yamada S, Shiba H, Fujiwara T, Ohara M, et al. Susceptibilities of periodontopathogenic and cariogenic bacteria to antibacterial peptides, {beta}-defensins and LL37, produced by human epithelial cells. J Antimicrob Chemother 2005;55:888-96. https://doi.org/10.1093/jac/dki103
  34. Tanaka D, Miyasaki KT, Lehrer RI. Sensitivity of Actinobacillus actinomycetemcomitans and Capnocytophaga spp. to the bactericidal action of LL-37: a cathelicidin found in human leukocytes and epithelium. Oral Microbiol Immunol 2000;15:226-31. https://doi.org/10.1034/j.1399-302x.2000.150403.x
  35. Ximenez-Fyvie LA, Haffajee AD, Socransky SS. Comparison of the microbiota of supra- and subgingival plaque in health and periodontitis. J Clin Periodontol 2000;27:648-57. https://doi.org/10.1034/j.1600-051x.2000.027009648.x
  36. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr. Microbial complexes in subgingival plaque. J Clin Periodontol 1998;25:134-44. https://doi.org/10.1111/j.1600-051X.1998.tb02419.x
  37. Ji S, Hyun J, Park E, Lee BL, Kim KK, Choi Y. Susceptibility of various oral bacteria to antimicrobial peptides and to phagocytosis by neutrophils. J Periodontal Res 2007;42:410-9. https://doi.org/10.1111/j.1600-0765.2006.00962.x
  38. Lee W, Aitken S, Sodek J, McCulloch CA. Evidence of a direct relationship between neutrophil collagenase activity and periodontal tissue destruction in vivo: role of active enzyme in human periodontitis. J Periodontal Res 1995;30:23-33. https://doi.org/10.1111/j.1600-0765.1995.tb01249.x
  39. Gainet J, Chollet-Martin S, Brion M, Hakim J, Gougerot-Pocidalo MA, Elbim C. Interleukin-8 production by polymorphonuclear neutrophils in patients with rapidly progressive periodontitis: an amplifying loop of polymorphonuclear neutrophil activation. Lab Invest 1998;78:755-62.
  40. Liu RK, Cao CF, Meng HX, Gao Y. Polymorphonuclear neutrophils and their mediators in gingival tissues from generalized aggressive periodontitis. J Periodontol 2001;72:1545-53. https://doi.org/10.1902/jop.2001.72.11.1545
  41. Sheikhi M, Gustafsson A, Jarstrand C. Cytokine, elastase and oxygen radical release by Fusobacterium nucleatum-activated leukocytes: a possible pathogenic factor in periodontitis. J Clin Periodontol 2000;27:758-62. https://doi.org/10.1034/j.1600-051x.2000.027010758.x
  42. Katsuragi H, Ohtake M, Kurasawa I, Saito K. Intracellular production and extracellular release of oxygen radicals by PMNs and oxidative stress on PMNs during phagocytosis of periodontopathic bacteria. Odontology 2003;91:13-8. https://doi.org/10.1007/s10266-003-0022-1
  43. Sheikhi M, Bouhafs RK, Hammarström KJ, Jarstrand C. Lipid peroxidation caused by oxygen radicals from Fusobacterium-stimulated neutrophils as a possible model for the emergence of periodontitis. Oral Dis 2001;7:41-6.
  44. Ding Y, Uitto VJ, Haapasalo M, Lounatmaa K, Konttinen YT, Salo T, et al. Membrane components of Treponema denticola trigger proteinase release from human polymorphonuclear leukocytes. J Dent Res 1996;75:1986-93. https://doi.org/10.1177/00220345960750121101
  45. Ding Y, Haapasalo M, Kerosuo E, Lounatmaa K, Kotiranta A, Sorsa T. Release and activation of human neutrophil matrix metallo- and serine proteinases during phagocytosis of Fusobacterium nucleatum, Porphyromonas gingivalis and Treponema denticola. J Clin Periodontol 1997; 24:237-48. https://doi.org/10.1111/j.1600-051X.1997.tb01837.x
  46. Yamazaki K, Polak B, Bird PS, Gemmell E, Hara K, Seymour GJ. Effects of periodontopathic bacteria on IL-1 and IL-1 inhibitor production by human polymorphonuclear neutrophils. Oral Microbiol Immunol 1989;4:193-8.
  47. Yoshimura A, Hara Y, Kaneko T, Kato I. Secretion of IL-1 beta, TNF-alpha, IL-8 and IL-1ra by human polymorphonuclear leukocytes in response to lipopolysaccharides from periodontopathic bacteria. J Periodontal Res 1997; 32:279-86. https://doi.org/10.1111/j.1600-0765.1997.tb00535.x
  48. Shin J, Ji S, Choi Y. Ability of oral bacteria to induce tissue-destructive molecules from human neutrophils. Oral Dis 2008;14:327-34. https://doi.org/10.1111/j.1601-0825.2007.01382.x
  49. Dale BA. Periodontal epithelium: a newly recognized role in health and disease. Periodontol 2000 2002;30:70-8. https://doi.org/10.1034/j.1600-0757.2002.03007.x
  50. Weinberg A, Krisanaprakornkit S, Dale BA. Epithelial antimicrobial peptides: review and significance for oral applications. Crit Rev Oral Biol Med 1998;9:399-414. https://doi.org/10.1177/10454411980090040201
  51. Dale BA, Kimball JR, Krisanaprakornkit S, Roberts F, Robinovitch M, O'Neal R, et al. Localized antimicrobial peptide expression in human gingiva. J Periodontal Res 2001; 36:285-94. https://doi.org/10.1034/j.1600-0765.2001.360503.x
  52. Ji S, Kim Y, Min BM, Han SH, Choi Y. Innate immune responses of gingival epithelial cells to nonperiodontopathic and periodontopathic bacteria. J Periodontal Res 2007;42: 503-10. https://doi.org/10.1111/j.1600-0765.2007.00974.x
  53. Darveau RP, Belton CM, Reife RA, Lamont RJ. Local chemokine paralysis, a novel pathogenic mechanism for Porphyromonas gingivalis. Infect Immun 1998;66:1660-5.
  54. Huang GT, Kim D, Lee JK, Kuramitsu HK, Haake SK. Interleukin-8 and intercellular adhesion molecule 1 regulation in oral epithelial cells by selected periodontal bacteria: multiple effects of Porphyromonas gingivalis via antagonistic mechanisms. Infect Immun 2001;69:1364-72. https://doi.org/10.1128/IAI.69.3.1364-1372.2001
  55. Yang D, Chertov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, et al. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 1999;286:525-8. https://doi.org/10.1126/science.286.5439.525
  56. Froy O. Regulation of mammalian defensin expression by Toll-like receptor-dependent and independent signalling pathways. Cell Microbiol 2005;7:1387-97. https://doi.org/10.1111/j.1462-5822.2005.00590.x
  57. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006;124:783-801. https://doi.org/10.1016/j.cell.2006.02.015
  58. Kanzler H, Barrat FJ, Hessel EM, Coffman RL. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 2007;13:552-9. https://doi.org/10.1038/nm1589
  59. Ye Z, Ting JP. NLR, the nucleotide-binding domain leucine-rich repeat containing gene family. Curr Opin Immunol 2008;20:3-9. https://doi.org/10.1016/j.coi.2008.01.003
  60. Burckstummer T, Baumann C, Bluml S, Dixit E, Durnberger G, Jahn H, et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 2009;10:266-72. https://doi.org/10.1038/ni.1702
  61. Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T, et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 2007;448: 501-5. https://doi.org/10.1038/nature06013
  62. Ji S, Shin JE, Kim YS, Oh JE, Min BM, Choi Y. Toll-like receptor 2 and NALP2 mediate induction of human beta-defensins by fusobacterium nucleatum in gingival epithelial cells. Infect Immun 2009;77:1044-52. https://doi.org/10.1128/IAI.00449-08
  63. Krisanaprakornkit S, Kimball JR, Weinberg A, Darveau RP, Bainbridge BW, Dale BA. Inducible expression of human beta-defensin 2 by Fusobacterium nucleatum in oral epithelial cells: multiple signaling pathways and role of commensal bacteria in innate immunity and the epithelial barrier. Infect Immun 2000;68:2907-15. https://doi.org/10.1128/IAI.68.5.2907-2915.2000
  64. Peyret-Lacombe A, Brunel G, Watts M, Charveron M, Duplan H. TLR2 sensing of F. nucleatum and S. sanguinis distinctly triggered gingival innate response. Cytokine 2009;46:201-10. https://doi.org/10.1016/j.cyto.2009.01.006
  65. Lu Q, Darveau RP, Samaranayake LP, Wang CY, Jin L. Differential modulation of human {beta}-defensins expression in human gingival epithelia by Porphyromonas gingivalis lipopolysaccharide with tetra- and penta-acylated lipid A structures. Innate Immun 2009;15:325-35. https://doi.org/10.1177/1753425909104899
  66. Darveau RP, Pham TT, Lemley K, Reife RA, Bainbridge BW, Coats SR, et al. Porphyromonas gingivalis lipopolysaccharide contains multiple lipid A species that functionally interact with both toll-like receptors 2 and 4. Infect Immun 2004;72:5041-51. https://doi.org/10.1128/IAI.72.9.5041-5051.2004
  67. Hashimoto M, Asai Y, Ogawa T. Separation and structural analysis of lipoprotein in a lipopolysaccharide preparation from Porphyromonas gingivalis. Int Immunol 2004;16:1431-7. https://doi.org/10.1093/intimm/dxh146
  68. Chung WO, Hansen SR, Rao D, Dale BA. Protease-activated receptor signaling increases epithelial antimicrobial peptide expression. J Immunol 2004;173:5165-70. https://doi.org/10.4049/jimmunol.173.8.5165
  69. Shin JE, Kim YS, Oh JE, Min BM, Choi Y. Treponema denticola suppresses expression of human {beta}-defensin-3 in gingival epithelial cells through inhibition of the toll-like receptor 2 axis. Infect Immun 2010;78:672-9. https://doi.org/10.1128/IAI.00808-09
  70. Shin JE, Choi Y. Treponema denticola suppresses expression of human beta-defensin-2 in gingival epithelial cells through inhibition of TNFalpha production and TLR2 activation. Mol Cells 2010;29:407-12. https://doi.org/10.1007/s10059-010-0048-5
  71. Funderburg N, Lederman MM, Feng Z, Drage MG, Jadlowsky J, Harding CV, et al. Human -defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. Proc Natl Acad Sci U S A 2007;104:18631-5. https://doi.org/10.1073/pnas.0702130104
  72. Jia HP, Schutte BC, Schudy A, Linzmeier R, Guthmiller JM, Johnson GK, et al. Discovery of new human beta-defensins using a genomics-based approach. Gene 2001;263: 211-8. https://doi.org/10.1016/S0378-1119(00)00569-2
  73. Chung WO, Dale BA. Innate immune response of oral and foreskin keratinocytes: utilization of different signaling pathways by various bacterial species. Infect Immun 2004;72:352-8. https://doi.org/10.1128/IAI.72.1.352-358.2004
  74. Menzies BE, Kenoyer A. Signal transduction and nuclear responses in Staphylococcus aureus-induced expression of human beta-defensin 3 in skin keratinocytes. Infect Immun 2006;74:6847-54. https://doi.org/10.1128/IAI.00389-06
  75. Krisanaprakornkit S, Kimball JR, Dale BA. Regulation of human beta-defensin-2 in gingival epithelial cells: the involvement of mitogen-activated protein kinase pathways, but not the NF-kappaB transcription factor family. J Immunol 2002;168:316-24. https://doi.org/10.4049/jimmunol.168.1.316
  76. Lu Q, Samaranayake LP, Darveau RP, Jin L. Expression of human beta-defensin-3 in gingival epithelia. J Periodontal Res 2005;40:474-81. https://doi.org/10.1111/j.1600-0765.2005.00827.x
  77. Asai Y, Ohyama Y, Gen K, Ogawa T. Bacterial fimbriae and their peptides activate human gingival epithelial cells through Toll-like receptor 2. Infect Immun 2001;69:7387-95. https://doi.org/10.1128/IAI.69.12.7387-7395.2001
  78. Kim Y, Jo AR, Jang da H, Cho YJ, Chun J, Min BM, et al. Toll-like receptor 9 mediates oral bacteria-induced IL-8 expression in gingival epithelial cells. Immunol Cell Biol 2012;90:655-63. https://doi.org/10.1038/icb.2011.85
  79. Mikolajczyk-Pawlinska J, Travis J, Potempa J. Modulation of interleukin-8 activity by gingipains from Porphyromonas gingivalis: implications for pathogenicity of periodontal disease. FEBS Lett 1998;440:282-6. https://doi.org/10.1016/S0014-5793(98)01461-6
  80. Deng QD, Han Y, Xia X, Kuramitsu HK. Effects of the oral spirochete Treponema denticola on interleukin-8 expression from epithelial cells. Oral Microbiol Immunol 2001; 16:185-7. https://doi.org/10.1034/j.1399-302x.2001.016003185.x
  81. Shin J, Choi Y. The fate of Treponema denticola within human gingival epithelial cells. Mol Oral Microbiol 2012; 27:471-82. https://doi.org/10.1111/j.2041-1014.2012.00660.x
  82. Lambris JD, Ricklin D, Geisbrecht BV. Complement evasion by human pathogens. Nat Rev Microbiol 2008;6:132-42. https://doi.org/10.1038/nrmicro1824
  83. Flannagan RS, Cosio G, Grinstein S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol 2009;7:355-66. https://doi.org/10.1038/nrmicro2128
  84. Liang S, Krauss JL, Domon H, McIntosh ML, Hosur KB, Qu H, et al. The C5a receptor impairs IL-12-dependent clearance of Porphyromonas gingivalis and is required for induction of periodontal bone loss. J Immunol 2011; 186:869-77. https://doi.org/10.4049/jimmunol.1003252
  85. Hajishengallis G, Wang M, Liang S, Triantafilou M, Triantafilou K. Pathogen induction of CXCR4/TLR2 cross-talk impairs host defense function. Proc Natl Acad Sci U S A 2008;105:13532-7. https://doi.org/10.1073/pnas.0803852105
  86. Hajishengallis G, Shakhatreh MA, Wang M, Liang S. Complement receptor 3 blockade promotes IL-12-mediated clearance of Porphyromonas gingivalis and negates its virulence in vivo. J Immunol 2007;179:2359-67. https://doi.org/10.4049/jimmunol.179.4.2359

피인용 문헌

  1. Salivary Interleukin-6 and -8 in Patients With Oral Cancer and Patients With Chronic Oral Inflammatory Diseases vol.85, pp.7, 2013, https://doi.org/10.1902/jop.2013.130320
  2. Inflammatory markers in gingival crevicular fluid of periodontitis patients with type 2 diabetes mellitus according to glycemic control: A pilot study vol.12, pp.5, 2015, https://doi.org/10.4103/1735-3327.166193
  3. Bacterial invasion and persistence: critical events in the pathogenesis of periodontitis? vol.50, pp.5, 2013, https://doi.org/10.1111/jre.12248
  4. Transcriptome Analysis of B Cell Immune Functions in Periodontitis: Mucosal Tissue Responses to the Oral Microbiome in Aging vol.7, pp.None, 2016, https://doi.org/10.3389/fimmu.2016.00272
  5. Immune system transcriptome in gingival tissues of young nonhuman primates vol.51, pp.2, 2016, https://doi.org/10.1111/jre.12293
  6. The Effect of Scaling and Root Planning on Salivary TNF-α and IL-1α Concentrations in Patients with Chronic Periodontitis vol.11, pp.None, 2017, https://doi.org/10.2174/1874210601711010573
  7. Age and Periodontal Health-Immunological View vol.5, pp.4, 2013, https://doi.org/10.1007/s40496-018-0202-2
  8. A GGT Inhibitor Suppresses IL-6 and IL-8 Expressions Enhanced by LPS in Gingival Fibroblasts vol.18, pp.3, 2020, https://doi.org/10.5466/ijoms.18.183
  9. The Pathogenic Effects of Fusobacterium nucleatum on the Proliferation, Osteogenic Differentiation, and Transcriptome of Osteoblasts vol.8, pp.None, 2013, https://doi.org/10.3389/fcell.2020.00807
  10. Treponema denticola stimulates Oncostatin M cytokine release and de novo synthesis in neutrophils and macrophages vol.108, pp.5, 2020, https://doi.org/10.1002/jlb.4ma0620-072rr
  11. Neutrophil granulocytes: participation in homeostatic and reparative processes. Part II vol.11, pp.1, 2013, https://doi.org/10.15789/2220-7619-ngp-1258
  12. Porphyromonas gingivalis facilitated the foam cell formation via lysosomal integral membrane protein 2 (LIMP2) vol.56, pp.2, 2013, https://doi.org/10.1111/jre.12812
  13. An Overview of Physical, Microbiological and Immune Barriers of Oral Mucosa vol.22, pp.15, 2021, https://doi.org/10.3390/ijms22157821