DOI QR코드

DOI QR Code

Effect of Vacuum Annealing on the Properties of ITO Thin Films

진공 열처리에 따른 ITO 박막의 특성 변화

  • Heo, Sung-Bo (School of materials science and Engineering, University of Ulsan) ;
  • Kim, So-Young (School of materials science and Engineering, University of Ulsan) ;
  • Kim, Seung-Hong (School of materials science and Engineering, University of Ulsan) ;
  • Kim, Sun-Kyung (School of materials science and Engineering, University of Ulsan) ;
  • Kim, Yu-Sung (R&D Team, New optics LTD.) ;
  • Kim, Daeil (School of materials science and Engineering, University of Ulsan)
  • 허성보 (울산대학교 첨단소재공학부) ;
  • 김소영 (울산대학교 첨단소재공학부) ;
  • 김승홍 (울산대학교 첨단소재공학부) ;
  • 김선경 (울산대학교 첨단소재공학부) ;
  • 김유성 (뉴옵틱스 기술연구소) ;
  • 김대일 (울산대학교 첨단소재공학부)
  • Received : 2013.01.28
  • Accepted : 2013.02.20
  • Published : 2013.03.30

Abstract

ITO thin films deposited on glass substrate with RF magnetron sputtering were vacuum annealed at 100, 200 and $300^{\circ}C$ for 30 minutes and then effect of annealing temperature on the structural, electrical and optical properties of ITO films were investigated. The structural properties are strongly related to annealing temperature. The annealed films above $100^{\circ}C$ are grown as a hexagonal wurtzite phase and the largest grain size is observed in the films annealed at $300^{\circ}C$. The electrical resistivity also decreases as low as $4.65{\times}10^{-4}{\Omega}cm$ with a increase in annealing temperature and ITO film annealed at $300^{\circ}C$ shows the lowest sheet resistance of $43.6{\Omega}/{\Box}$. The optical transmittance in a visible wavelength region also depends on the annealing temperature. The films annealed at $300^{\circ}C$ show higher transmittance of 80.6% than those of the films prepared in this study.

Keywords

References

  1. Y. Choi and S. Kim : Kor. J. Mater. Res., 16 (2006) https://doi.org/10.3740/MRSK.2006.16.8.490
  2. H. Lee, Y. Lee, I. Kim, M. Kang, S. Heo, Y. Kim and D. Kim : Vacuum, 86 (2012) 1494. https://doi.org/10.1016/j.vacuum.2012.02.041
  3. D. Kim and S. Kim : Thin Solid Films, 408 (2002) https://doi.org/10.1016/S0040-6090(02)00148-7
  4. V. Senthilkumar and P. Vickraman : Curr. Appl. Phys., 10 (2010) 880. https://doi.org/10.1016/j.cap.2009.10.014
  5. B. R. Krishna, T. Subramanyam, B. Srinivasulu and S. Uthanna : Opt. Mater., 15 (2000) 217. https://doi.org/10.1016/S0925-3467(00)00041-0
  6. B. D. Cullity : Elements of X-ray diffractions, Addition-Wesley, Reading, MA, (1978) 102-121.
  7. G. Haacke : J. Appl. Phys., 47 (1976) 4086. https://doi.org/10.1063/1.323240
  8. S. Heo, Y. Lee, H. Lee, S. Kim, Y. Kim, Y. Kong and D. Kim : J. Kor. Soc. Heat Treat., 24 (2011) 338.
  9. D. Kim : Renewable Energy, 36 (2011) 525. https://doi.org/10.1016/j.renene.2010.06.031
  10. Y. Kim, S. Heo, H. Lee, Y. Lee, I. Kim, M. Kang, D. Choi, B. Lee, M. Kim and D. Kim : Appl. Surf. Sci., 258 (2012) 3903. https://doi.org/10.1016/j.apsusc.2011.12.057
  11. J. Moon and D. Kim : J. Kor. Inst. Surf. Eng., 40 (2007) 117. https://doi.org/10.5695/JKISE.2007.40.3.117

Cited by

  1. Influence of ZnO Thickness on the Optical and Electrical Properties of GZO/ZnO Bi-layered Films vol.15, pp.4, 2014, https://doi.org/10.4313/TEEM.2014.15.4.198
  2. Surface and Mechanical Properties of ITO Thin Films Deposited from a Recycled Target vol.29, pp.2, 2013, https://doi.org/10.7735/ksmte.2020.29.2.134