Isolation and Culture Conditions of Hydrogen-producing Bacterium from Sewage Sludge

하수슬러지에서 수소생산 균주의 분리 및 배양조건

  • Woo, Dae-Sik (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University) ;
  • Joo, Hyun (Department of Physiology, College of Medicine, Inje University) ;
  • Lee, Jae-Hwa (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University)
  • 우대식 (신라대학교 의생명과학대학 생명공학과) ;
  • 주현 (인제대학교 생리학교실) ;
  • 이재화 (신라대학교 의생명과학대학 생명공학과)
  • Published : 2013.08.10

Abstract

Hydrogen producing bacterium, strain AS12 was isolated from the sludge of the anaerobic wastewater treatment process of south sewage treatment plant, Busan city. Phylogenetic analysis based on 16S rRNA sequence studies indicated that AS12 belonged to the genus Escherichia coli sp.. The optimum temperature and pH for hydrogen production were $35^{\circ}C$ and 8.0, respectively. The impact of the types and concentrations of carbon and nitrogen sources in the media on hydrogen production was investigated. The optimum carbon and nitrogen concentrations were 10 g/L of galactose and 5 g/L of peptone, respectively.

부산시 남부하수처리장 혐기성 하수처리 공정 중 채취한 슬러지에서 수소생산 균주 AS12를 분리하였다. 분리된 균주의 16S rRNA 염기서열을 바탕으로 계통학적 분류 결과 Escherichia coli sp.에 속하는 것으로 동정되었다. 수소생산을 위한 최적 온도와 pH는 각각 $35^{\circ}C$와 8.0이었다. 배지내의 탄소원과 질소원의 종류 및 농도가 수소생산에 미치는 영향을 알아보았다. 탄소원은 galactose로 10 g/L가 최적이었고, 질소원은 peptone으로 5 g/L가 최적이었다.

Keywords

References

  1. C. Y. Lee and S. W. Lee, J. of KORRA., 19, 49 (2011).
  2. J.-Y. Kim, S. M. Lee, J. H. Kim, and J.-H. Lee, KSBB J., 25, 547 (2010).
  3. K. H. Kim, Y. J. Choi, and E. Y. Kim, KSBB J., 23, 54 (2008).
  4. M.-S. Kim, Y. S. Yoon, S. J. Sim, T. H. Park, and J. K. Lee, KHNES., 13, 330 (2002).
  5. W.-H. Yoon, H.-K. Kim, and T.-J. Lee, J. KORRA., 14, 131 (2006).
  6. Y. H. Jo, B. H. Jo, and H. J. Cha, J. KORRA., 19, 57 (2011).
  7. M. S. Kim and Y. K. Oh, J. KSEE., 15, 118 (2006).
  8. S.-J. Jeon and E.-S. Lee, Kor. J. Microbiol. Biotechnol., 38, 399 (2010).
  9. O. S. Joo, Korea Chem. Eng. Res., 49, 688 (2011). https://doi.org/10.9713/kcer.2011.49.6.688
  10. H. S. Lee and T. J. Lee, J. KORRA., 20, 41 (2012).
  11. M.-S. Kim and J.-S. Baek, KSBB J., 20, 393 (2005).
  12. J.-H. Shin and T. H. Park, Korea Chem. Eng. Res., 44, 16 (2006).
  13. Y. K. Oh and M. S. Kim, KHNES., 19, 41 (2008).
  14. M. H. Hwang, N. J. Jang, S. H. Hyun, S. G. Hong, and I. S. Kim, J. KSEE., 24, 1939 (2002).
  15. J. Y. Choi, Y. C. Jho, and I. S. Ahn, Appl. Chem. Eng., 20, 449 (2009).
  16. D. W. Penfold, C. F. Forster, and L. E. Macaskie, Enzyme Microb. Technol., 33, 185 (2003). https://doi.org/10.1016/S0141-0229(03)00115-7
  17. J. Wang and W. Wan, Int. J. Hydrogen Energy., 34, 799 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.015
  18. C. G. Kim and H. G. Shin, J. KORRA., 19, 22 (2011).
  19. D. Ghosh and P. C. Hallenbeck, Int. J. Hydrogen Energy, 34, 7979 (2009). https://doi.org/10.1016/j.ijhydene.2009.08.004
  20. Z. D. Alvarado-Cuevas, L. G. Ordonez Acevedo, J. T. Ornelas Salas, and A. D. Leon-Rodriguez, N. Biotechnol., In press (2013).
  21. Y. S. Sa and Y. H. Kim, KSBB J., 26, 189 (2011). https://doi.org/10.7841/ksbbj.2011.26.3.189
  22. M. J. Axley, D. A. Grahame, and T. C. Stadtman, J. Biol. Chem., 265, 18213 (1990).