The Effects of Saengkankunbi-tang and Its Composition on Free Fatty Acid-Induced Lipotoxicity in HepG2 Cell

HepG2 cell에서 유리지방산 유발 지방독성에 대한 생간건비탕(生肝健脾湯)과 일부 조성 한약물의 효과

  • Hong, Sung-In (Dept. of East-West Integrated Medicine, Kyung-Hee University Medical Center)
  • 홍성인 (경희의료원 한방병원 동서협진실)
  • Published : 2013.03.30

Abstract

Objectives : The aim of this study was to investigate whether the effects of extract from Saengkankunbi-tang and its composition that Artimisiae capillaris Herba, Crataegi Fructus, Alismatis Rhizoma, Hoelen and Raphani Semen could protect HepG2 cells from palmitic acid-induced lipotoxicity through lysosomal and mitochondrial pathways in an in vitro model. Methods : To examine the effects of the extracts from Saengkankunbi-tang and its composition that Artimisiae capillaris Herba, Crataegi Fructus, Alismatis Rhizoma, Hoelen and Raphani Semen on palmitic acid-induced lipotoxicity in HepG2 cells, we measured the contents of cell viability, cytotoxicity. Then to investigate the effects of the extract from Saengkankunbi-tang, Artimisiae capillaris Herba and Raphani Semen, we measured that triglyceride, reactive oxygen species, ATP levels, glutathione levels, cytochrome c and cathepsin B. Results : The extracts from Saengkankunbi-tang and its composition had a cell-protective function. The extracts from Saengkankunbi-tang, Artimisiae capillaris Herba and Raphani Semen controlled triglyceride over-accumulation in cells and reduced overproduction of reactive oxygen species. The extracts from Saengkankunbi-tang and Raphani Semen increased ATP and glutathione levels which had been decreased by lipotoxicity. The extracts from Saengkankunbi-tang, Artimisiae capillaris Herba and Raphani Semen reduced leakage of cytochrome c and the extracts from Saengkankunbi-tang and Raphani Semen reduced leakage of cathepsin B in lipotoxicity. Conclusions : These results show that the extracts from Saengkankunbi-tang and its composition that Artimisiae capillaris Herba and Raphani Semen have cell protective effects on palmitic acid-induced lipotoxicity through lysosomal and mitochondrial pathways.

Keywords

References

  1. van Herpen NA, Schrauwen-Hinderling VB. Lipid accumulation in non-adipose tissue and lipotoxicity. Physiol Behav 2008;94:231-41. https://doi.org/10.1016/j.physbeh.2007.11.049
  2. Angulo P. Nonalcoholic fatty liver disease. N Engl J Med 2002;346:1221-31. https://doi.org/10.1056/NEJMra011775
  3. Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 2004;40:1387-95. https://doi.org/10.1002/hep.20466
  4. Park SH, Jeon WK, Kim SH, Kim HJ, Park DI, Cho YK, et al. Prevalence and risk factors of non-alcoholic fatty liver disease among Korean adults. J Gastroenterol Hepatol 2006;21:138-43. https://doi.org/10.1111/j.1440-1746.2005.04086.x
  5. Fan JG, Saibara T, Kim BI, Kim BI, Sung JJ, Chutaputti A. What are the risk factors and settings for non-alcoholic fatty liver disease in Asia-Pacific?. J Gastroenterol Hepatol 2007;22: 794-800. https://doi.org/10.1111/j.1440-1746.2007.04952.x
  6. Schaffer JE. Lipotoxicity: when tissues overeat. Curr Opin Lipidol 2003;14:281-7. https://doi.org/10.1097/00041433-200306000-00008
  7. Day CP, James OF. Steatohepatitis: a tale of "two hits"?. Gastroenterology 1998;114:842-5. https://doi.org/10.1016/S0016-5085(98)70599-2
  8. Feldstein AE, Werneburg NW, Li Z, Bronk SF, Gores GJ. Bax inhibition protects against free fatty acid-induced lysosomal permeabilization. Am J Physiol Gastrointest Liver Physiol 2006; 290:G1339-46. https://doi.org/10.1152/ajpgi.00509.2005
  9. Hamaguchi M, Kojima T, Takeda N, Nakagawa T, Taniguchi H, Fujii K, et al. The metabolic syndrome as a predictor of nonalcoholic fatty liver disease. Ann Intern Med 2005;143:722-8. https://doi.org/10.7326/0003-4819-143-10-200511150-00009
  10. 김병운. 만성간염 3,136례에 대한 임상분석과 生肝健脾湯의 치료효과. 대한한의학회지 1993; 14(1):216-23.
  11. 김재용, 김영철, 이장훈, 우홍정. 生肝健脾湯이 HepG2 cell의 증식, 세포사멸 및 활성조절 신호전달계에 미치는 영향. 대한한방내과학회지 2006;27(1):149-65.
  12. 정성충, 김덕호, 우홍정, 김병운. 흰쥐의 實驗的 動脈硬化症에 對한 生肝健脾湯의 효과. 경희한의대논문집 1991;14:53-84.
  13. 김호철. 한약약리학. 서울: 집문당; 2001, p. 239-41, 283-5.
  14. 반상석, 윤현덕, 신오철, 신유정, 박치상, 박지하, 등. 고지방 식이로 유도된 비만 흰쥐에 茵蔯, 枳實, 山楂가 미치는 영향. 대한본초학회지 2006;21(3):55-67.
  15. Lee HS, Kim HH, Ku SK. Hepatoprotective effects of Artemisiae Capillaris Herba and Picrorrhiza Rhizoma combinations on carbon tetrachloride-induced subacute liver damage in rats. Nutr Res 2008;28:270-7. https://doi.org/10.1016/j.nutres.2008.02.001
  16. Thirupurasundari CJ, Jayalakshmi R, Niranjali Devaraj S. Liver architecture maintenance by tincture of Crataegus against isoproterenol-induced myocardially infarcted rats, J Med Food 2005; 8:400-4. https://doi.org/10.1089/jmf.2005.8.400
  17. 이장천, 이은, 이영철. 택사농축액이 고지방식이를 급여한 흰쥐의 지질구성 및 TBARS량에 미치는 영향. 대한본초학회지 2008;23(3):113-7.
  18. Hur JM, Choi JW, Park JC. Effects of methanol extract of Alisma orientale Rhizome and its major component, Alisol B 23-acetate, on hepatic drug metabolizing enzymes in rats treated with bromobenzene. Arch Pharm Res 2007;30:1543-9. https://doi.org/10.1007/BF02977323
  19. 윤희진, 차효미, 김성원, 신완철, 김혜경, 최석영. 복령 추출물이 혈중 지질성상에 미치는 영향. 한국식품영양과학회지 2006;35(8):1005-9.
  20. 명성하, 이학인, 김연섭. 竹茹와 蘿蔔子가 實驗的 糖尿에 미치는 영향. 대한본초학회지 1999; 14(1):79-86.
  21. Lee JR, Shin JH, Byun SH, Park SJ, Jo MJ, Park SM, et al. Anti-obese and hypolipemic effects of the aqueous extracts of raphani semen in mice fed high fat diet. J Korean Soc Appl Biol Chem 2009;52(1):50-7. https://doi.org/10.3839/jksabc.2009.009
  22. Borchardt RA, Davis RA. Intrahepatic assembly of very low density lipoproteins. J Biol Chem 1987;262:16394-402.
  23. Maedler K, Spinas GA, Dyntar D, Moritz W, Kaiser N, Donath MY. Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function. Diabetes 2001; 50:69-76. https://doi.org/10.2337/diabetes.50.1.69
  24. Wei Y, Wang D, Topczewski F, Pagliassotti MJ. Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol Endocrinol Metab 2006;291:E275-81. https://doi.org/10.1152/ajpendo.00644.2005
  25. Angelico F, Burattin M, Alessandri C, Del Ben M, Lirussi F. Drugs improving insulin resistance for non-alcoholic fatty liver disease and/or non-alcoholic steatohepatitis. Cochrane Database Syst Rev 2007;(1):CD005166.
  26. Krsnoff JB, Painter PL, Wallace JP, Bass NM, Merriman RB. Health-related fitness and physical activity in patients with nonalcoholic fatty liver disease. Hepatology 2008;47:1158-66. https://doi.org/10.1002/hep.22137
  27. Rallidis LS, Crakoulis CK, Parasi AS. Pravastatin in patients with nonalcoholic steatohepatitis: results of a pilot study. Atherosclerosis 2004; 174:193-6. https://doi.org/10.1016/j.atherosclerosis.2004.01.008
  28. Wu X, Zhang L, Gurley E, Studer E, Shang J, Wang T, et al. Prevention of free fatty acid-induced hepatic lipotoxicity by 18beta-glycyrrhetinic acid through lysosomal and mitochondrial pathways. Hepatology 2008;47:1905-15. https://doi.org/10.1002/hep.22239
  29. 성경화. HepG2 cell에서 palmitic acid로 유발된 lipotoxicity에 대한 대추의 보호효과. 경희대학교; 2010.
  30. Joshi-Barve S, Barve SS, Amancherla K, Gobejishvili L, Hill D, Cave M, et al. Palmitatic acid induces production of proinflammatory cytokine interleukin-8 from hepatocytes. Hepatology 2007;46:823-30. https://doi.org/10.1002/hep.21752
  31. Gomez-Lechin MJ, Donato MT, Martinez-Romero A, Jimenez N, Castell JV, O'Connor JE. A human hepatocellular in vitro model to investigate steatosis. Chem Biol Interact 2007;165:106-16. https://doi.org/10.1016/j.cbi.2006.11.004
  32. Sanyal AJ. Mechanisms of Disease: pathogenesis of nonalcoholic fatty liver disease. Nat Clin Pract Gastroenterol Hepatol 2005;2:46-53. https://doi.org/10.1038/ncpgasthep0084
  33. Robertson G, Leclercq I, Farrell GC. Nonalcoholic steatosis and steatohepatitis. II. Cytochrome P-450 enzymes and oxidative stress. Am J Physiol Gastrointest Liver Physiol 2001;281: G1135-9.
  34. Fernandez-Checa JC, Kaplowitz N. Hepatic mitochondrial glutathione: transport and role in disease and toxicity. Toxicol Appl Pharmacol 2005;204:263-73. https://doi.org/10.1016/j.taap.2004.10.001
  35. Miura T, Muraoka S, Ogiso T. Antioxidant activity of metallothionein compared with reduced glutathione. Life Sci 1997;60:301-9. https://doi.org/10.1016/S0024-3205(97)00156-2
  36. Schrauwen P, Schrauwen-Hinderling V, Hoeks J, Hesselink MK. Mitochondrial dysfunction and lipotoxicity. Biochem Biophys Acta 2010;1801:266-71.
  37. Li Z, Berk M, McIntyre TM, Gores GJ, Feldstein AE. The lysosomal-mitochondrial axis in free fatty acid-induced hepatic lipotoxicity. Hepatology 2008;47:1495-503. https://doi.org/10.1002/hep.22183
  38. Almaguel FG, Liu JW, Pacheco FJ, de Leon D, Casiano CA, de Leon M. Lipotoxicity-mediated cell dysfunction and death involve lysosomal membrane permeabilization and cathepsin L activity. Brain Res 2010;1318:133-43. https://doi.org/10.1016/j.brainres.2009.12.038