References
- Rueda, M. E.; Sarabia, L. A.; Herrero, A.; Ortiz, M. C. Anal. Chim. Acta 2003, 479, 173. https://doi.org/10.1016/S0003-2670(02)01542-8
- Xie, T.; Liu, Q.; Shi, Y.; Liu, Q. J. Chromatogr. A 2006, 1109, 317. https://doi.org/10.1016/j.chroma.2006.01.135
- Fujino, K.; Yoshitake, T.; Kehr, J.; Nohta, H.; Yamaguchi, M. J. Chromatogr. A 2003, 1012, 169. https://doi.org/10.1016/S0021-9673(03)01180-4
- Sirajuddin; Bhanger, M. I.; Niaz, A.; Shah, A.; Rauf, A. Talanta 2007, 72, 546. https://doi.org/10.1016/j.talanta.2006.11.021
- Qi, H.; Zhang, C. Electroanalysis 2005, 17, 832. https://doi.org/10.1002/elan.200403150
- Wang, L.; Huang, P. F.; Bai, J. Y.; Wang, H. J.; Zhang, L. Y.; Zhao, Y. Q. Microchimica Acta 2007, 158, 151. https://doi.org/10.1007/s00604-006-0703-x
- Zhao, D.-M.; Zhang, X.-H.; Feng, L.-J.; Jia, L.; Wang, S.-F. Colloids Surf., B 2009, 74, 317. https://doi.org/10.1016/j.colsurfb.2009.07.044
- Yin, H.; Zhang, Q.; Zhou, Y.; Ma, Q.; liu, T.; Zhu, L.; Ai, S. Electrochim. Acta 2011, 56, 2748. https://doi.org/10.1016/j.electacta.2010.12.060
- Cavani, F.; Trifirò, F.; Vaccari, A. Catalysis Today 1991, 11, 173. https://doi.org/10.1016/0920-5861(91)80068-K
- de Melo, J. V.; Cosnier, S.; Mousty, C.; Martelet, C.; Jaffrezic- Renault, N. Anal. Chem. 2002, 74, 4037. https://doi.org/10.1021/ac025627+
- Williams, G. R.; O'Hare, D. J. Mater. Chem. 2006, 16, 3065. https://doi.org/10.1039/b604895a
- Touati, S.; Mansouri, H.; Bengueddach, A.; de Roy, A.; Forano, C.; Prevot, V. Chem. Commun. 2012, 48, 7197. https://doi.org/10.1039/c2cc31817b
- Sels, B.; Vos, D. D.; Buntinx, M.; Pierard, F.; Kirsch-De Mesmaeker, A.; Jacobs, P. Nature 1999, 400, 855. https://doi.org/10.1038/23674
- Li, M.; Ni, F.; Wang, Y.; Xu, S.; Zhang, D.; Chen, S.; Wang, L. Electroanalysis 2009, 21, 1521. https://doi.org/10.1002/elan.200804573
- Gong, J.; Wang, L.; Song, D.; Zhu, X.; Zhang, L. Biosens. Bioelectron. 2009, 25, 493. https://doi.org/10.1016/j.bios.2009.07.008
- Bai, P.; Fan, G.; Li, F. Materials Letters 2011, 65, 2330. https://doi.org/10.1016/j.matlet.2011.05.038
- Gao, Z.; Wang, J.; Li, Z.; Yang, W.; Wang, B.; Hou, M.; He, Y.; Liu, Q.; Mann, T.; Yang, P.; Zhang, M.; Liu, L. Chem. Mater. 2011, 23, 3509. https://doi.org/10.1021/cm200975x
- Wang, L.; Wang, D.; Dong, X. Y.; Zhang, Z. J.; Pei, X. F.; Chen, X. J.; Chen, B.; Jin, J. Chem. Commun. 2011, 47, 3556. https://doi.org/10.1039/c0cc05420h
- Malak-Polaczyk, A.; Vix-Guterl, C.; Frackowiak, E. Energ. Fuel. 2010, 24, 3346. https://doi.org/10.1021/ef901505c
- Wang, Y.; Zhang, D.; Tang, M.; Xu, S.; Li, M. Electrochim. Acta 2010, 55, 4045. https://doi.org/10.1016/j.electacta.2010.02.060
- Zhang, Y.; Tan, Y.-W.; Stormer, H. L.; Kim, P. Nature 2005, 438,201. https://doi.org/10.1038/nature04235
- Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Nat. Nanotechnol. 2008, 3, 101. https://doi.org/10.1038/nnano.2007.451
- Wu, X.; Hu, Y.; Jin, J.; Zhou, N.; Wu, P.; Zhang, H.; Cai, C. Anal. Chem. 2010, 82, 3588. https://doi.org/10.1021/ac100621r
- Wang, D.; Choi, D.; Li, J.; Yang, Z.; Nie, Z.; Kou, R.; Hu, D.; Wang, C.; Saraf, L. V.; Zhang, J.; Aksay, I. A.; Liu, J. ACS Nano 2009, 3, 907. https://doi.org/10.1021/nn900150y
- Wang, Y.; Li, Y.; Tang, L.; Lu, J.; Li, J. Electrochem. Commun. 2009, 11, 889. https://doi.org/10.1016/j.elecom.2009.02.013
- Shan, C.; Yang, H.; Song, J.; Han, D.; Ivaska, A.; Niu, L. Anal. Chem. 2009, 81, 2378. https://doi.org/10.1021/ac802193c
- Guo, P.; Song, H.; Chen, X. Electrochem. Commun. 2009, 11, 1320. https://doi.org/10.1016/j.elecom.2009.04.036
- Chen, D.; Feng, H.; Li, J. Chemical Reviews 2012.
- Chen, L.; Tang, Y.; Wang, K.; Liu, C.; Luo, S. Electrochem. Commun. 2011, 13, 133. https://doi.org/10.1016/j.elecom.2010.11.033
- Guo, H.-L.; Wang, X.-F.; Qian, Q.-Y.; Wang, F.-B.; Xia, X.-H. ACS Nano 2009, 3, 2653. https://doi.org/10.1021/nn900227d
- Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D. Chem. Mater. 1999, 11, 771. https://doi.org/10.1021/cm981085u
- Yarger, M. S.; Steinmiller, E. M. P.; Choi, K.-S. Inorg. Chem. 2008, 47, 5859. https://doi.org/10.1021/ic800193j
- Du, H.; Ye, J.; Zhang, J.; Huang, X.; Yu, C. J. Electroanal. Chem. 2011, 650, 209. https://doi.org/10.1016/j.jelechem.2010.10.002
- Bai, J.; Guo, L.; Ndamanisha, J. C.; Qi, B. J. Appl. Electrochem. 2009, 39, 2497. https://doi.org/10.1007/s10800-009-9941-z
- Li, J.; Liu, C.-Y.; Cheng, C. Electrochim. Acta 2011, 56, 2712. https://doi.org/10.1016/j.electacta.2010.12.046
- Zhang, D.; Peng, Y.; Qi, H.; Gao, Q.; Zhang, C. Sens. Actuators, B 2009, 136, 113. https://doi.org/10.1016/j.snb.2008.11.010
- Ahammad, A. J. S.; Sarker, S.; Rahman, M. A.; Lee, J.-J. Electroanalysis 2010, 22, 694. https://doi.org/10.1002/elan.200900449
- Ghanem, M. A. Electrochem. Commun. 2007, 9, 2501. https://doi.org/10.1016/j.elecom.2007.07.023
Cited by
- Electrochemically assisted deposition by local pH tuning: a versatile tool to generate ordered mesoporous silica thin films and layered double hydroxide materials vol.19, pp.7, 2015, https://doi.org/10.1007/s10008-014-2570-4
- An amperometric lactate biosensor based on lactate dehydrogenase immobilized onto graphene oxide nanoparticles-modified pencil graphite electrode vol.16, pp.8, 2016, https://doi.org/10.1002/elsc.201600082
- Electrochemical Determination of Environmental Hormone Nonylphenol Based on Composite Film Modified Gold Electrode vol.162, pp.6, 2015, https://doi.org/10.1149/2.0271506jes
- One Step Fabrication of Au Nanoparticles‐Ni‐Al Layered Double Hydroxide Composite Film for the Determination of L‐Cysteine vol.27, pp.5, 2013, https://doi.org/10.1002/elan.201400624
- Cauliflower‐like NiCo2O4−Zn/Al Layered Double Hydroxide Nanocomposite as an Efficient Electrochemical Sensing Platform for Selective Pyridoxine Detection vol.32, pp.6, 2013, https://doi.org/10.1002/elan.201900600