DOI QR코드

DOI QR Code

Electrodeposition of Graphene-Zn/Al Layered Double Hydroxide (LDH) Composite for Selective Determination of Hydroquinone

  • Kwon, Yeonji (Department of Chemistry Education, Seoul National University) ;
  • Hong, Hun-Gi (Department of Chemistry Education, Seoul National University)
  • Received : 2012.12.31
  • Accepted : 2013.03.19
  • Published : 2013.06.20

Abstract

A graphene-Zn/Al layered double hydroxide composite film was simultaneously prepared by electrochemical deposition on the surface of a glassy carbon electrode (G-LDH/GCE) from the mixture solution containing GO and nitrate salts of $Zn^{2+}$ and $Al^{3+}$. The modified electrode showed good electrochemical performances toward the simultaneous electrochemical detection of hydroquinone (HQ), catechol (CA) and resorcinol (RE) due to the unique properties of graphene (G) and LDH such as large active surface area, facile electronic transport and high electrocatalytic activity. The redox characteristics of G-LDH/GCE were investigated with cyclic voltammetry and differential pulse voltammetry. The well-separated oxidation peak potentials, corresponding to the oxidation of HQ, CA and RE, were observed at 0.126 V, 0.228 V and 0.620 V respectively. The amperometric response of the modified electrode exhibited that HQ can be detected without interference of CA and RE. Under the optimized conditions, the oxidation peak current of HQ is linear with the concentration of HQ from 6.0 ${\mu}M$ to 325.0 ${\mu}M$ with the detection limit of 0.077 ${\mu}M$ (S/N=3). The modified electrode was successfully applied to the direct determination of HQ in a local tap water, showing reliable recovery data.

Keywords

References

  1. Rueda, M. E.; Sarabia, L. A.; Herrero, A.; Ortiz, M. C. Anal. Chim. Acta 2003, 479, 173. https://doi.org/10.1016/S0003-2670(02)01542-8
  2. Xie, T.; Liu, Q.; Shi, Y.; Liu, Q. J. Chromatogr. A 2006, 1109, 317. https://doi.org/10.1016/j.chroma.2006.01.135
  3. Fujino, K.; Yoshitake, T.; Kehr, J.; Nohta, H.; Yamaguchi, M. J. Chromatogr. A 2003, 1012, 169. https://doi.org/10.1016/S0021-9673(03)01180-4
  4. Sirajuddin; Bhanger, M. I.; Niaz, A.; Shah, A.; Rauf, A. Talanta 2007, 72, 546. https://doi.org/10.1016/j.talanta.2006.11.021
  5. Qi, H.; Zhang, C. Electroanalysis 2005, 17, 832. https://doi.org/10.1002/elan.200403150
  6. Wang, L.; Huang, P. F.; Bai, J. Y.; Wang, H. J.; Zhang, L. Y.; Zhao, Y. Q. Microchimica Acta 2007, 158, 151. https://doi.org/10.1007/s00604-006-0703-x
  7. Zhao, D.-M.; Zhang, X.-H.; Feng, L.-J.; Jia, L.; Wang, S.-F. Colloids Surf., B 2009, 74, 317. https://doi.org/10.1016/j.colsurfb.2009.07.044
  8. Yin, H.; Zhang, Q.; Zhou, Y.; Ma, Q.; liu, T.; Zhu, L.; Ai, S. Electrochim. Acta 2011, 56, 2748. https://doi.org/10.1016/j.electacta.2010.12.060
  9. Cavani, F.; Trifirò, F.; Vaccari, A. Catalysis Today 1991, 11, 173. https://doi.org/10.1016/0920-5861(91)80068-K
  10. de Melo, J. V.; Cosnier, S.; Mousty, C.; Martelet, C.; Jaffrezic- Renault, N. Anal. Chem. 2002, 74, 4037. https://doi.org/10.1021/ac025627+
  11. Williams, G. R.; O'Hare, D. J. Mater. Chem. 2006, 16, 3065. https://doi.org/10.1039/b604895a
  12. Touati, S.; Mansouri, H.; Bengueddach, A.; de Roy, A.; Forano, C.; Prevot, V. Chem. Commun. 2012, 48, 7197. https://doi.org/10.1039/c2cc31817b
  13. Sels, B.; Vos, D. D.; Buntinx, M.; Pierard, F.; Kirsch-De Mesmaeker, A.; Jacobs, P. Nature 1999, 400, 855. https://doi.org/10.1038/23674
  14. Li, M.; Ni, F.; Wang, Y.; Xu, S.; Zhang, D.; Chen, S.; Wang, L. Electroanalysis 2009, 21, 1521. https://doi.org/10.1002/elan.200804573
  15. Gong, J.; Wang, L.; Song, D.; Zhu, X.; Zhang, L. Biosens. Bioelectron. 2009, 25, 493. https://doi.org/10.1016/j.bios.2009.07.008
  16. Bai, P.; Fan, G.; Li, F. Materials Letters 2011, 65, 2330. https://doi.org/10.1016/j.matlet.2011.05.038
  17. Gao, Z.; Wang, J.; Li, Z.; Yang, W.; Wang, B.; Hou, M.; He, Y.; Liu, Q.; Mann, T.; Yang, P.; Zhang, M.; Liu, L. Chem. Mater. 2011, 23, 3509. https://doi.org/10.1021/cm200975x
  18. Wang, L.; Wang, D.; Dong, X. Y.; Zhang, Z. J.; Pei, X. F.; Chen, X. J.; Chen, B.; Jin, J. Chem. Commun. 2011, 47, 3556. https://doi.org/10.1039/c0cc05420h
  19. Malak-Polaczyk, A.; Vix-Guterl, C.; Frackowiak, E. Energ. Fuel. 2010, 24, 3346. https://doi.org/10.1021/ef901505c
  20. Wang, Y.; Zhang, D.; Tang, M.; Xu, S.; Li, M. Electrochim. Acta 2010, 55, 4045. https://doi.org/10.1016/j.electacta.2010.02.060
  21. Zhang, Y.; Tan, Y.-W.; Stormer, H. L.; Kim, P. Nature 2005, 438,201. https://doi.org/10.1038/nature04235
  22. Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Nat. Nanotechnol. 2008, 3, 101. https://doi.org/10.1038/nnano.2007.451
  23. Wu, X.; Hu, Y.; Jin, J.; Zhou, N.; Wu, P.; Zhang, H.; Cai, C. Anal. Chem. 2010, 82, 3588. https://doi.org/10.1021/ac100621r
  24. Wang, D.; Choi, D.; Li, J.; Yang, Z.; Nie, Z.; Kou, R.; Hu, D.; Wang, C.; Saraf, L. V.; Zhang, J.; Aksay, I. A.; Liu, J. ACS Nano 2009, 3, 907. https://doi.org/10.1021/nn900150y
  25. Wang, Y.; Li, Y.; Tang, L.; Lu, J.; Li, J. Electrochem. Commun. 2009, 11, 889. https://doi.org/10.1016/j.elecom.2009.02.013
  26. Shan, C.; Yang, H.; Song, J.; Han, D.; Ivaska, A.; Niu, L. Anal. Chem. 2009, 81, 2378. https://doi.org/10.1021/ac802193c
  27. Guo, P.; Song, H.; Chen, X. Electrochem. Commun. 2009, 11, 1320. https://doi.org/10.1016/j.elecom.2009.04.036
  28. Chen, D.; Feng, H.; Li, J. Chemical Reviews 2012.
  29. Chen, L.; Tang, Y.; Wang, K.; Liu, C.; Luo, S. Electrochem. Commun. 2011, 13, 133. https://doi.org/10.1016/j.elecom.2010.11.033
  30. Guo, H.-L.; Wang, X.-F.; Qian, Q.-Y.; Wang, F.-B.; Xia, X.-H. ACS Nano 2009, 3, 2653. https://doi.org/10.1021/nn900227d
  31. Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.; Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D. Chem. Mater. 1999, 11, 771. https://doi.org/10.1021/cm981085u
  32. Yarger, M. S.; Steinmiller, E. M. P.; Choi, K.-S. Inorg. Chem. 2008, 47, 5859. https://doi.org/10.1021/ic800193j
  33. Du, H.; Ye, J.; Zhang, J.; Huang, X.; Yu, C. J. Electroanal. Chem. 2011, 650, 209. https://doi.org/10.1016/j.jelechem.2010.10.002
  34. Bai, J.; Guo, L.; Ndamanisha, J. C.; Qi, B. J. Appl. Electrochem. 2009, 39, 2497. https://doi.org/10.1007/s10800-009-9941-z
  35. Li, J.; Liu, C.-Y.; Cheng, C. Electrochim. Acta 2011, 56, 2712. https://doi.org/10.1016/j.electacta.2010.12.046
  36. Zhang, D.; Peng, Y.; Qi, H.; Gao, Q.; Zhang, C. Sens. Actuators, B 2009, 136, 113. https://doi.org/10.1016/j.snb.2008.11.010
  37. Ahammad, A. J. S.; Sarker, S.; Rahman, M. A.; Lee, J.-J. Electroanalysis 2010, 22, 694. https://doi.org/10.1002/elan.200900449
  38. Ghanem, M. A. Electrochem. Commun. 2007, 9, 2501. https://doi.org/10.1016/j.elecom.2007.07.023

Cited by

  1. Electrochemically assisted deposition by local pH tuning: a versatile tool to generate ordered mesoporous silica thin films and layered double hydroxide materials vol.19, pp.7, 2015, https://doi.org/10.1007/s10008-014-2570-4
  2. An amperometric lactate biosensor based on lactate dehydrogenase immobilized onto graphene oxide nanoparticles-modified pencil graphite electrode vol.16, pp.8, 2016, https://doi.org/10.1002/elsc.201600082
  3. Electrochemical Determination of Environmental Hormone Nonylphenol Based on Composite Film Modified Gold Electrode vol.162, pp.6, 2015, https://doi.org/10.1149/2.0271506jes
  4. One Step Fabrication of Au Nanoparticles‐Ni‐Al Layered Double Hydroxide Composite Film for the Determination of L‐Cysteine vol.27, pp.5, 2013, https://doi.org/10.1002/elan.201400624
  5. Cauliflower‐like NiCo2O4−Zn/Al Layered Double Hydroxide Nanocomposite as an Efficient Electrochemical Sensing Platform for Selective Pyridoxine Detection vol.32, pp.6, 2013, https://doi.org/10.1002/elan.201900600