DOI QR코드

DOI QR Code

Standoff Raman Spectroscopic Detection of Explosive Molecules

  • Chung, Jin Hyuk (Defense Advanced R&D Institute, Agency for Defense Development) ;
  • Cho, Soo Gyeong (Defense Advanced R&D Institute, Agency for Defense Development)
  • Received : 2013.02.09
  • Accepted : 2013.03.11
  • Published : 2013.06.20

Abstract

We developed a standoff Raman detection system for explosive molecules (EMs). Our system was composed of reflective telescope with 310 mm diameter lens, 532 nm pulse laser, and Intensified Charge-Coupled Device (ICCD) camera. In order to remove huge background noise coming from ambient light, laser pulses with nanosecond time width were fired to target sample and ICCD was gated to open only during the time when the scattered Raman signal from the sample arrived at ICCD camera. We performed standoff experiments with military EMs by putting the detector at 10, 20 and 30 m away from the source. The standoff results were compared with the confocal Raman results. Based on our standoff experiments, we were able to observe the peaks in the range of 1200 and $1600cm^{-1}$, where vibrational modes of nitro groups were appeared. The wave numbers and shapes of these peaks may serve as good references in detecting and identifying various EMs.

Keywords

References

  1. Vapour and Trace Detection of Explosives for Anti-Terrorism Purpose; Krausa, M., Reznev, A. A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherland, 2003.
  2. Detection and Disposal of Improvised Explosives; Schubert, H., Kuznetsov, A. Eds.; Springer: Dordrecht, The Netherland, 2005.
  3. Counterterrorists Detection Techniques of Explosives; Yinon, J., Ed.; Elsevier: Amsterdam, The Netherland, 2007.
  4. Aspects of Explosives Detection; Marshall, M., Oxley, J. C., Eds.; Elsevier: Amsterdam, The Netherland, 2009.
  5. Moore, D. S. Rev. Sci. Instrum. 2004, 75, 2499. https://doi.org/10.1063/1.1771493
  6. Annual Report FY 2008; Joint Improvised Explosive Device Defeat Organization (JIEDDO), Washington D.C., U.S.A., 2009.
  7. Ali, E. M. A.; Edwards, H. G. M.; Hargreaves, M. D.; Scowen, I. J. J. Raman Spectrosc. 2009, 40, 144. https://doi.org/10.1002/jrs.2096
  8. Yang, L.; Ma, L.; Chen, G.; Liu, J.; Tian, Z.-Q. Chem. Eur. J. 2010, 16, 12683. https://doi.org/10.1002/chem.201001053
  9. Botti, S.; Cantarini, L.; Palucci, A. J. Raman Spectrosc. 2010, 41, 866. https://doi.org/10.1002/jrs.2649
  10. Petterson, I. E. I.; Lopez-Lopez, M.; Carcia-Ruiz, C.; Gooijer, C.; Buijis, J. B.; Ariese, F. Anal. Chem. 2011, 83, 8517. https://doi.org/10.1021/ac2018102
  11. Harvey, S. D.; Ewing, R. G. Int. J. Ion Mobil. Spec. 2009, 12, 115. https://doi.org/10.1007/s12127-009-0031-z
  12. Choi, S.-S.; Kim, Y.-K.; Kim, O.-B.; An, S. G.; Shin, M.- W.; Maeng, S.-J.; Choi, G. S. Bull. Korean Chem. Soc. 2010, 31, 2393.
  13. Kozole, J.; Stairs, J. R.; Cho, I.; Harper, J. D.; Lukow, S. R.; Lareau, R. T.; DeBono, R.; Kuja, F. Anal. Chem. 2011, 83, 8596. https://doi.org/10.1021/ac201999a
  14. Sanders, N. L.; Kothari, S.; Huang, G.; Salazar, G.; Cooks, R. G. Anal. Chem. 2010, 82, 5315.
  15. Nilles, J. M.; Connell, T. R.; Stokes, S. T.; Durst, H. D. Propell. Explos. Pyrotech. 2010, 35, 446. https://doi.org/10.1002/prep.200900084
  16. Yang, Y.; Li, Y.; Wang, H.; Li, T.; Wu, B. Nucl. Instr. Meth. Phys. Res. A 2007, 579, 400. https://doi.org/10.1016/j.nima.2007.04.087
  17. Sohn, H.; Sailor, M. J.; Magde, D.; Troggler, W. C. J. Am. Chem. Soc. 2003, 125, 3821. https://doi.org/10.1021/ja021214e
  18. Jang, S.; Kim, S. G.; Jung, D.; Kwon, H.; Song, J.; Cho, S.; Ko, Y. C.; Sohn, H. Bull. Korean Chem. Soc. 2006, 27, 1965. https://doi.org/10.5012/bkcs.2006.27.12.1965
  19. Andrew, T. L.; Swager, T. M. J. Am. Chem. Soc. 2007, 129, 7254. https://doi.org/10.1021/ja071911c
  20. Sanchez, J. C.; DiPasquale, A. G.; Rheingold, A. L.; Trogler, W. C. Chem. Mater. 2007, 19, 6459. https://doi.org/10.1021/cm702299g
  21. Lee, Y. H.; Liu, H.; Lee, J. Y.; Kim, S. H.; Kim, S. K.; Sessler, J. L.; Kim, Y.; Kim, J. S. Chem. Eur. J. 2010, 16, 5895. https://doi.org/10.1002/chem.200903439
  22. Clarkson, J.; Smith, W. E.; Batcheler, D. N.; Smith, D. A.; Coats, A. M. J. Mol. Struct. 2003, 648, 203. https://doi.org/10.1016/S0022-2860(03)00024-3
  23. Rice, B. M.; Chabalowski, C. F. J. Phys. Chem. A 1997, 101, 8720. https://doi.org/10.1021/jp972062q
  24. Torres, P.; Mercado, L.; Cotte, I.; Hernandez, S. P.; Mina, N.; Santana, A.; Chamberlain, R. T.; Lareau, R.; Castro, M. E. J. Phys. Chem. B 2004, 108, 8799. https://doi.org/10.1021/jp0373550
  25. Brand, H. V.; Rabie, R. L.; Funk, D. J.; Diaz-Acosta, I.; Pulay, P.; Lippert, T. K. J. Phys. Chem. B 2002, 106, 10594. https://doi.org/10.1021/jp020909z
  26. Goetz, F.; Brill, T. B. J. Phys. Chem. 1979, 83, 340. https://doi.org/10.1021/j100466a008
  27. Iqbal, Z.; Bulusu, S.; Autera, J. R. J. Chem. Phys. 1974, 60, 221. https://doi.org/10.1063/1.1680772
  28. Hwang, J.; Choi, N.; Park, A.; Park, J.-Q.; Chung, J. H.; Baek, S.; Cho, S. G.; Baek, S.-J.; Choo, J. J. Mol. Struct. 2013, in press.
  29. Gaft, M.; Nagli, L. Opt. Mater. 2008, 30, 1739. https://doi.org/10.1016/j.optmat.2007.11.013
  30. Efremov, E. V.; Buijs, J. B.; Gooijer, C.; Ariese, F. Appl. Spectrosc. 2007, 61, 6.
  31. Akeson, M.; Nordberg, M.; Ehlerding, A.; Nilsson, L.-E.; Ostmark, H.; Strombeck, P. Proc. of SPIE 2011, 8017, 8017C-1.
  32. Fleger, Y.; Nagli, L.; Gaft, M.; Rosenbluh, M. J. Lumines. 2009, 129, 979. https://doi.org/10.1016/j.jlumin.2009.04.008
  33. Ariese, F.; Meuzelaar, H.; Kerssens, M. M.; Buijs, J. B.; Gooijer, C. Analyst 2009, 134, 1192. https://doi.org/10.1039/b821437a

Cited by

  1. Nanosecond Gated Raman Spectroscopy for Standoff Detection of Hazardous Materials vol.35, pp.12, 2013, https://doi.org/10.5012/bkcs.2014.35.12.3547
  2. Development of a cost-effective remote explosives detection system based on Raman spectroscopy vol.1719, pp.1, 2013, https://doi.org/10.1088/1742-6596/1719/1/012080
  3. RDX remote Raman detection on NATO SET-237 samples vol.136, pp.4, 2013, https://doi.org/10.1140/epjp/s13360-021-01336-9