DOI QR코드

DOI QR Code

Comparison of the Neointima Inhibition Between Paclitaxel- and Sirolimus-Eluting Expanded Polytetrafluoroethylene Hemodialysis Grafts in a Porcine Model

  • Baek, Insu (Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Cho, AJin (Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Hwang, Jinsun (Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kim, Heasun (Department of Chemistry, College of Natural Science, Seoul National University) ;
  • Park, Jong-Sang (Department of Chemistry, College of Natural Science, Seoul National University) ;
  • Kim, Dae Joong (Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • Received : 2012.09.13
  • Accepted : 2013.03.07
  • Published : 2013.06.20

Abstract

Neointimal hyperplasia causes vascular access dysfunction in hemodialysis patients with synthetic arteriovenous (AV) grafts. Several studies have reported that paclitaxel- or sirolimus-eluting AV grafts inhibit neointimal hyperplasia and display lower rates of stenosis compared with control grafts. However, there have been few comparative studies of the efficacy of paclitaxel- and sirolimus-eluting grafts. We compared the neointimal hyperplasia of paclitaxel- and sirolimus-eluting grafts. AV grafts were implanted laterally between the common carotid artery and the external jugular vein in 12 female Landrace pigs. The animals were sacrificed six weeks after surgery. The neointimal hyperplasia at the anastomosis sites of the grafts was quantified using the ratio of the intragraft hyperplasia to the graft area (H/G ratio) at the graft-vessel interface. The area of intimal hyperplasia at the venous (paclitaxel 1.06 [0.72-1.56] vs sirolimus 2.40 [1.72-3.0] $mm^2$, P = 0.04) and arterial anastomosis sites (paclitaxel 0.93 [0.57-1.48] vs sirolimus 2.40 [1.72-3.0] $mm^2$, P = 0.04) was significantly different between the two groups. However, the H/G ratios for the venous anastomosis site (paclitaxel 0.25 (0.17-0.38) vs sirolimus 0.38 (0.2-0.66), P = 0.4) and the arterial anastomosis site (paclitaxel 0.19 (0.08-0.39) vs sirolimus 0.41 (0.34-0.50), P = 0.1) did not differ significantly between the groups. In conclusion, there was no significant difference in the inhibition of neointimal hyperplasia by sirolimus- and paclitaxel-eluting AV grafts.

Keywords

References

  1. Staramos, D. N.; Lazarides, M. K.; Tzilalis, V. D.; Ekonomou, C. S.; Simopoulos, C. E.; Dayantas, J. N. Eur. J. Surg. 2000, 166, 777. https://doi.org/10.1080/110241500447407
  2. Rooijens, P. P.; Burgmans, J. P.; Yo, T. I.; Hop, W. C.; de Smet, A. A.; van den Dorpel, M. A.; Fritschy, W. M.; de Groot, H. G.; Burger, H.; Tordoir, J. H. J. Vasc. Surg. 2005, 42, 481. https://doi.org/10.1016/j.jvs.2005.05.025
  3. Rotmans, J. I.; Pattynama, P. M.; Verhagen, H. J.; Hino, I.; Velema, E.; Pasterkamp, G.; Stroes, E. S. Circulation 2005, 111, 1537. https://doi.org/10.1161/01.CIR.0000159332.18585.B5
  4. Cinat, M. E.; Hopkins, J.; Wilson, S. E. Ann. Vasc. Surg. 1999, 13, 191. https://doi.org/10.1007/s100169900241
  5. Gibson, K. D.; Gillen, D. L.; Caps, M. T.; Kohler, T. R.; Sherrard, D. J.; Stehman-Breen, C. O. J. Vasc. Surg. 2001, 34, 694. https://doi.org/10.1067/mva.2001.117890
  6. Masaki, T.; Rathi, R.; Zentner, G.; Leypoldt, J. K.; Mohammad, S. F.; Burns, G. L.; Li, L.; Zhuplatov, S.; Chirananthavat, T.; Kim, S. J.; Kern, S.; Holman, J.; Kim, S. W.; Cheung, A. K. Kidney Int. 2004, 66, 2061. https://doi.org/10.1111/j.1523-1755.2004.00985.x
  7. Nugent, H. M.; Groothuis, A.; Seifert, P.; Guerraro, J. L.; Nedelman, M.; Mohanakumar, T.; Edelman, E. R. J. Vasc. Res. 2002, 39, 524. https://doi.org/10.1159/000067207
  8. Baek, I.; Bai, C. Z.; Hwang, J.; Park, J.; Park, J. S.; Kim, D. J. Nephrol. Dial. Transpl. 2012, 27, 1997. https://doi.org/10.1093/ndt/gfr545
  9. Lee, B. H.; Nam, H. Y.; Kwon, T.; Kim, S. J.; Kwon, G. Y.; Jeon, H. J.; Lim, H. J.; Lee, W. K.; Park, J. S.; Ko, J. Y.; Kim, D. J. Nephrol. Dial. Transpl. 2006, 21, 2432. https://doi.org/10.1093/ndt/gfl070
  10. Paulson, W. D.; Kipshidze, N.; Kipiani, K.; Beridze, N.; DeVita, M. V.; Shenoy, S.; Iyer, S. S. Nephrol. Dial. Transpl. 2012, 27, 1219. https://doi.org/10.1093/ndt/gfr667
  11. Terry, C. M.; Blumenthal, D. K.; Sikharam, S.; Li, L.; Kuji, T.; Kern, S. E.; Cheung, A. K. Nephrol. Dial. Transplant. 2006, 21, 3172. https://doi.org/10.1093/ndt/gfl366
  12. Rotmans, J. I.; Velema, E.; Verhagen, H. J.; Blankensteijn, J. D.; Kastelein, J. J.; de Kleijn, D. P.; Yo, M.; Pasterkamp, G.; Stroes, E. S. J. Surg. Res. 2003, 113, 161. https://doi.org/10.1016/S0022-4804(03)00228-2
  13. Kiechl, S.; Willeit, J. Arterioscler Thromb. Vasc. Biol. 1999, 19, 1491. https://doi.org/10.1161/01.ATV.19.6.1491
  14. Ferns, G. A.; Forster, L.; Stewart-Lee, A.; Konneh, M.; Nourooz- Zadeh, J.; Anggard, E. E. Proc. Natl. Acad. Sci. U S A 1992, 89, 11312. https://doi.org/10.1073/pnas.89.23.11312
  15. Braun-Dullaeus, R. C.; Mann, M. J.; Seay, U.; Zhang, L.; von Der Leyen, H. E.; Morris, R. E.; Dzau, V. J. Arterioscler Thromb. Vasc. Biol. 2001, 21, 1152. https://doi.org/10.1161/hq0701.092104
  16. Gallo, R.; Padurean, A.; Jayaraman, T.; Marx, S.; Roque, M.; Adelman, S.; Chesebro, J.; Fallon, J.; Fuster, V.; Marks, A.; Badimon, J. J. Circulation 1999, 99, 2164. https://doi.org/10.1161/01.CIR.99.16.2164
  17. Axel, D. I.; Kunert, W.; Goggelmann, C.; Oberhoff, M.; Herdeg, C.; Kuttner, A.; Wild, D. H.; Brehm, B. R.; Riessen, R.; Koveker, G.; Karsch, K. R. Circulation 1997, 96, 636. https://doi.org/10.1161/01.CIR.96.2.636
  18. Moses, J. W.; Leon, M. B.; Popma, J. J.; Fitzgerald, P. J.; Holmes, D. R.; O'Shaughnessy, C.; Caputo, R. P.; Kereiakes, D. J.; Williams, D. O.; Teirstein, P. S.; Jaeger, J. L.; Kuntz, R. E. N. Engl. J. Med. 2003, 349, 1315. https://doi.org/10.1056/NEJMoa035071
  19. Sabate, M.; Jimenez-Quevedo, P.; Angiolillo, D. J.; Gomez-Hospital, J. A.; Alfonso, F.; Hernandez-Antolin, R.; Goicolea, J.; Banuelos, C.; Escaned, J.; Moreno, R.; Fernandez, C.; Fernandez-Aviles, F.; Macaya, C. Circulation 2005, 112, 2175. https://doi.org/10.1161/CIRCULATIONAHA.105.562421
  20. Silber, S.; Colombo, A.; Banning, A. P.; Hauptmann, K.; Drzewiecki, J.; Grube, E.; Dudek, D.; Baim, D. S. Circulation 2009, 120, 1498. https://doi.org/10.1161/CIRCULATIONAHA.109.849877
  21. Naito, R.; Sakakura, K.; Wada, H.; Funayama, H.; Sugawara, Y.; Kubo, N.; Ako, J.; Momomura, S. Int. Heart. J. 2012, 53, 149. https://doi.org/10.1536/ihj.53.149
  22. Nasu, K.; Oikawa, Y.; Yoshikawa, R.; Kadotani, M.; Takeda, Y.; Ota, H.; Kamiya, H.; Muto, M.; Okamura, A.; Yamaki, M.; Usui, S.; Tohara, S.; Yamashita, J.; Suzuki, M.; Kawaguchi, R.; Kawajiri, K.; Nakatsu, Y.; Uchida, Y.; Kashima, Y.; Kawashima, N.; Ozaki, T.; Ogawa, T.; Aizawa, T.; Suzuki, T. Int. J. Cardiol. 2011.
  23. Nakazawa, G.; Finn, A. V.; Vorpahl, M.; Ladich, E. R.; Kolodgie, F. D.; Virmani, R. J. Am. Coll. Cardiol. 2011, 57, 390. https://doi.org/10.1016/j.jacc.2010.05.066

Cited by

  1. EFFECTS OF AQUEOUS MEDIUM, TWEEN-20 AND FLOW ON THE STABILITY OF SIROLIMUS vol.17, pp.02, 2017, https://doi.org/10.1142/S0219519417500397