DOI QR코드

DOI QR Code

RGP렌즈 제조 시 렌즈 물성과 렌즈 착용자 요인과의 관계

The Relationship between Lens Properties and the Lens Wearer's Factors in RGP Lens Manufacturing

  • 박미정 (서울과학기술대학교, 안경광학과) ;
  • 박하영 (서울과학기술대학교, 안경광학과) ;
  • 박정주 (서울과학기술대학교, 안경광학과) ;
  • 공희정 (서울과학기술대학교, 안경광학과) ;
  • 차영화 (서울과학기술대학교, 안경광학과) ;
  • 김소라 (서울과학기술대학교, 안경광학과)
  • Park, Mijung (Dept. of Optometry, Seoul National University of Science and Technology) ;
  • Park, Ha Young (Dept. of Optometry, Seoul National University of Science and Technology) ;
  • Park, Jung Ju (Dept. of Optometry, Seoul National University of Science and Technology) ;
  • Kong, Heejung (Dept. of Optometry, Seoul National University of Science and Technology) ;
  • Cha, Young Hwa (Dept. of Optometry, Seoul National University of Science and Technology) ;
  • Kim, So Ra (Dept. of Optometry, Seoul National University of Science and Technology)
  • 투고 : 2013.02.16
  • 심사 : 2013.03.16
  • 발행 : 2013.03.31

초록

목적: 본 연구에서는 RGP렌즈의 제조과정 중 연마에 의하여 유발되는 렌즈의 물성 변화를 조사하고 이에 따른 실제 착용감과 착용자의 눈물막 파괴시간은 어떻게 달라지는지 알아보고자 하였다. 방법: RGP렌즈(fluorosilicone acrylate재질) 제조 시 연마시간을 각각 0초, 25초, 50초 및 100초로 달리하여 제조한 4개의 렌즈두께, 렌즈 표면 및 렌즈 접촉각을 비교하였다. 또한 이들 렌즈를 눈물량이 정상인 피검안에 착용시키고 피검자들이 느끼는 착용감을 설문조사하였으며, 피검자들의 비침습성 눈물막 파괴시간을 측정하였다. 결과: 연마시간을 달리한 4개의 RGP렌즈 두께는 유의한 차이는 없었으나 연마 후에는 렌즈 표면이 매끄러워짐을 주사전자현미경으로 확인하였다. RGP렌즈의 접촉각은 연마시간의 증가에 따라 유의하게 감소하여 연마시간이 0초인 렌즈와 100초인 렌즈 간의 접촉각 차이는 약 $16^{\circ}$ 정도이었으며 이는 통계적으로도 유의한 차이이었다. RGP렌즈의 실제 착용감은 렌즈의 습윤성이 증대할수록 좋아지는 경향을 보였으나 비례적으로 좋아지는 것은 아니었다. 연마조건에 따른 착용자의 눈물막 파괴시간변화는 습윤성이나 착용감의 변화와는 다른 양상을 보였다. 결론: 본 연구에서는 RGP렌즈 제조 시 물리적인 자극에 의한 습윤성의 증대나 렌즈두께의 얇아짐, 렌즈조도의 향상이 실제 착용 시 타각적 및 자각적 만족도의 증가와 일치하지 않는 것으로 나타났다. 따라서 RGP렌즈 제조 시 렌즈의 물성뿐만 아니라 착용자의 생리적인 요인 또한 고려되어야 할 것을 제안할 수 있다.

Purpose: The present study was conducted to investigate the changes in the physical properties of RGP lenses induced by the polishing during the process of RGP lens manufacturing, and further evaluate the differences in the actual wearer's comfort and the tear film break-up time caused by these changes. Methods: RGP lenses (fluorosilicone acrylate material) were divided into 4 groups by the different lens-polishing time like 0, 25, 50 and 100 seconds and the thickness, the surface roughness and the wetting angle of those lenses were compared. Furthermore, the comfortability of the lens wear was surveyed after applying these lenses on the subject's eyes with normal tear volume and the non-invasive tear break-up time of the wearers was measured. Results: The central thickness of 4 RGP lenses made of different lens-polishing time was not significantly different however, the lens surface was changed smoother after polishing to be confirmed by scanning electron microscopy. The wetting angle of the RGP lens significantly decreased in accordance with the increase of polishing time. Thus, the difference of approximately $16^{\circ}$ between 0 second and 100 seconds-polishing was statistically significant. The actual wearing feeling of RGP lens was tended to improve in accordance with the increase of the lens wettability however, it was not proportional improvement. The non-invasive tear break-up time of the lens wearers showed different aspect compared with the changes in lens wettability and the actual feeling of RGP lens wear. Conclusions: In this study, better lens wettability, thinner lens thickness, and/or improved lens surface induced by physical stimuli in the process of RGP lens manufacturing was not well-correlated with the increase of actual subjective/objective satisfaction in RGP lens wear. Thus, the consideration of physical properties of the lens as well as the lens wearers' physiological factors in the process of RGP lens manufacturing may be suggested.

키워드

참고문헌

  1. Korean Optometric Association and Gallup Korea. Special release: The actual state of nationwide usage of eyeglasses. 2011. http://www.optic.or.kr/Cate_02/content.asp?ref=478&step=1&re_level=1&board_id=notice&page=4&board_kind_sub=(Jan. 12, 2013).
  2. Korean Optometric Association. Special release: Everexpending contact lens market. Korean Optometric Association e-News, 2005. http://www.optic.or.kr/Upload/Webzine/pdf/2005-11/040100000021.pdf(Nov. 24, 2012).
  3. Tranoudis I, Efron N. In-eye performance of soft contact lenses made from different materials. Cont Lens Anterior Eye. 2004;27(3):133-148. https://doi.org/10.1016/j.clae.2004.02.004
  4. Efron N, Maldonado-Codina C. Development of contact lenses from a biomaterial point of view-Materials, manufacture, and clinical application. In: Comprehensive Biomaterials, 1st Ed. New York: Elsevier, 2011;517-541.
  5. Bennett ES, Weissman BA. Clinical contact lens practice, 1st Ed. Philadelphia: Lippincoott Williams & Wilkins, 2005;243-253.
  6. Quinn TG. Enhancing RGP surface wetting, 2000. http://www.clspectrum.com/articleviewer.aspx?articleID=11778 (Dec. 12, 2012).
  7. Merindano MD, Canals M, Saona C, Costa J. Rigid gas permeable contact lenses surface roughness examined by interferential shifting phase and scanning electron microscopies. Ophthal Physiol Opt. 1998;18(1):75-82. https://doi.org/10.1016/S0275-5408(97)87878-7
  8. Jang JK, Shin HS. Composition and surface analyses of RGP contact lenses. J Korean Oph Opt Soc. 2010;15(4):329-337.
  9. Ryu GC, Park HJ, Kim JM, Lee SA, Ra MS, Ru GC. A study on distribution of dry eye and diagnosis methods. J Korean Oph Opt Soc. 2000;5(2):91-98.
  10. Farrell J, Grierson DJ, Patel S, Sturrock RD. A classification for dry eyes following comparison of tear thinning time with schirmer tear test. Acta Ophthalmol. 1992;70(3):357-360.
  11. Jung DI, Lee HS, Kim SR, Park MJ. The difference of tear break-up time by the fitting states of soft contact lens in normal and dry eyes. J Korean Oph Opt Soc. 2010;15(4):339-346.
  12. Madden RK, Paugh JR, Wang C. Comparative study of two non-invasive tear film stability techniques. Curr Eye Res. 1994;13(4):263-269. https://doi.org/10.3109/02713689408995787
  13. Faber E, Golding TR, Lowe R, Brennan NA. Effect of hydrogel lens wear on tear film stability. Optom Vis Sci. 1991;68(5):380-384. https://doi.org/10.1097/00006324-199105000-00010
  14. Mengher LS, Bron AJ, Tonge SR, Gilbert DJ. A noninvasive instrument for clinical assessment of the pre-corneal tear film stability. Curr Eye Res. 1985; 4(1):1-7. https://doi.org/10.3109/02713688508999960
  15. Korean Food and Drug Administration. The standard specification of medical devices, revised-Hard contact lens/Soft contact lens No. 2012-96, 2013. http://www.kfda.go.kr/medicaldevice/index.do?nMenuCode=22&page=1&page=1&mode=view&boardSeq=67936(17 January 2013).
  16. Shirafkan A, woodward EG, Hull CC. A novel approach to measuring the wettability of rigid contact lenses. mass measurement of the adherent liquid on the rigid lens surface (1). Ophthalmic Physiol Opt. 1995;15(6):575-583. https://doi.org/10.1016/0275-5408(95)00050-N
  17. Huff JW, Egan DJ, Katich MJ. Parameter and environmental influences on rigid contact lens wettability. Am J Optom Physiol Opt. 1988;65(9):717-721. https://doi.org/10.1097/00006324-198809000-00005
  18. Lorentz H, Rogers R, Jones L. The impact of lipid on contact angle wettability. Optom Vis Sci. 2007;84(10);946-953. https://doi.org/10.1097/OPX.0b013e318157a6c1
  19. Michael JA. Contact lens surface properties and interaction. Optometry Today. 1999;27-35.
  20. Chowhan MA, Asgharian B, Fontana F. In vitro comparison of soaking for rigid gas-permeable contact lenses. Clin Therapeu. 1995;17(2):290-295. https://doi.org/10.1016/0149-2918(95)80027-1
  21. Kim DS. Fundamentals of contact lens movement. J Korean Oph Opt Soc. 2008;13(1):5-13.

피인용 문헌

  1. Changes in Subjective Symptom, Tear Film Stabilization and Blinking Rates when Wearing RGP Lenses with Different Polishing Conditions for Certain Period of Time vol.19, pp.1, 2014, https://doi.org/10.14479/jkoos.2014.19.1.31