DOI QR코드

DOI QR Code

고온가압으로 소결한 고순도 이트리아 세라믹 소결체의 산화반응 특성

Characteristics of Thermal Oxidation on Hot-Pressed Pure Yttria Ceramics

  • 최진삼 (경상대학교 세라믹공학전공) ;
  • 신동우 (경상대학교 세라믹공학전공) ;
  • 배원태 (경상대학교 세라믹공학전공)
  • Choi, Jinsam (Department of Ceramic Engineering, Gyeongsang National University) ;
  • Shin, Dong Woo (Department of Ceramic Engineering, Gyeongsang National University) ;
  • Bae, Won Tae (Department of Ceramic Engineering, Gyeongsang National University)
  • 투고 : 2012.11.10
  • 심사 : 2013.04.29
  • 발행 : 2013.05.31

초록

We investigated the characteristics of hot-pressed pure yttria ceramics, and annealed them in an oxidation atmosphere. Regardless of the heat treatment in the oxidation atmosphere, XRD analysis showed that all the samples had a $Y_2O_3$ phase without structural change. Even though the color variation of the hot-pressed $Y_2O_3$ ceramics was due to the sintering temperatures, the oxidation process turned the color of the $Y_2O_3$ ceramics into white. The color change during oxidation treatment appears to be related to oxygen defects. In addition, oxygen defects also affected the weight change and microstructure of the $Y_2O_3$ ceramics. The $Y_2O_3$ ceramic sintered at $1600^{\circ}C$ had a $5.03g/cm^3$ density, which is close to the theoretical density of $Y_2O_3$. As the sintering temperature increased, small homogeneous grains grew to large grains which affected the Vickers hardness. $Y_2O_3$ ceramics hot-pressed at $1600^{\circ}C$ and annealed at $1200^{\circ}C$ had a flexural strength of 140MPa.

키워드

참고문헌

  1. J. Iwasawa, R. Nishimizu, M. Tokita, M. Kiyohara, and K. Uematsu, "Plasma Resistance Dense Yttrium Oxide Film Prepared by Aerosol Deposition Process," J. Am. Ceram. Soc., 90 [8] 2327-32 (2007). https://doi.org/10.1111/j.1551-2916.2007.01738.x
  2. P. J. Jorgensen and R. C. Anderson, "Grain-Boundary Segregation and Final Stage Sintering of $Y_2O_3$," J. Am. Ceram. Soc., 50 [11] 553-88 (1967). https://doi.org/10.1111/j.1151-2916.1967.tb14997.x
  3. A. Muta and Y. Tsukuda, "Method for Sintering Very Pure Yttria Compacts to Transparency," U.S. Pat. No:3764643 (Oct. 01, 1973).
  4. I. W. Chen and X. H. Wang, "Sintering Dense Nanocrystalline Ceramics Without Final-Stage Grain Growth," Nature, 404 168-71 (2000). https://doi.org/10.1038/35004548
  5. C. Greskovich and K. N. Woods, "Fabrication of Transparent $ThO_2$-Doped $Y_2O_3$," J. Am. Ceram. Soc. Bull., 52 [5] 473-78 (1973).
  6. A. Ikesue, K. Kamata, and K. Yoshida, "Synthesis of Transparent Nd-doped $HfO_2-Y_2O_3$ Ceramics Using HIP," J. Am. Ceram. Soc., 79 [2] 359-64 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08129.x
  7. J. S. Choi and W. T. Bae, "Full Density Yttria Ceramic Sintered by Using for Conventional Sintering Method with Fused Yttria as Starting Materials(in Korean)," Kr. Pat. No:10-2012-0082809 (Jul. 27, 2012).
  8. W. H. Rhodes, "Controlled Transient Solid Second Phase Sintering of Yttria," J. Am. Ceram. Soc., 64 [1] 13-19 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb09551.x
  9. L. M. Lopato, A. V. Shevchenoko, A. E. Kushchevskii, and S. G. Tresvyatskii, "Polymorphic Transitions of Rare Earth Oxides at High Temperatures," Inorg. Mater., 10 [8] 1276-81 and 1481-87 (1974).
  10. T. Nobby and P. Kofstad, "Electrical Conductivity and Defect Structure of $Y_2O_3$ as a Function of Water Vapor Pressure," J. Am. Ceram. Soc., 67 [12] 786-92 (1984). https://doi.org/10.1111/j.1151-2916.1984.tb19701.x
  11. V. Swamy, N. A. Dubrovinskaya, and L. S. Dubrovinsky, "High-Temperature Powder X-ray Diffraction of Yttria to Melting Point," J. Mater. Res., 14 [2] 456-59 (1999). https://doi.org/10.1557/JMR.1999.0065
  12. C. Brecher, G. Wei, and W. Rhodes, "Point Defects in Optical Ceramics High-Temperature Absorption Processes in Lanthan-Strengthened Yttria," J. Am. Ceram. Soc., 73 [6] 1473-88 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb09784.x
  13. R. Ackermann, E. Rauh, and R. Walters, "Thermodynamics Study of the System Yttrium + Yttrium Sesquioxide A Refinement of the Vapor Pressure of Yttrium," J. Chem. Thermodyn., 2 139-49 (1970). https://doi.org/10.1016/0021-9614(70)90073-X
  14. M. J. Verkerk, A. J. A. Winnubst, and A. J. Burggraf, "Effect of Impurities on Sintering and Conductivity of Yttria-Stabilized Zirconia," J. Mat. Sci., 7 3112-13 (1982).
  15. P. L. Chen and I. W. Chen, "Grain Boundary Mobility in $Y_2O_3$:Defect Mechanism and Dopant Effects," J. Am. Ceram. Soc., 79 [7] 1801-09 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb07998.x
  16. J. G. J. Peelen and R. Metselaar, "Light Scattering by Pores in Polycrystal Line Materials : Transmission Properties of Alumina," J. App. Phy., 45 [1] 216-20 (1974). https://doi.org/10.1063/1.1662961
  17. F. Jollet, C. Noguera, M. Gautier, N. Thromat, and J-P Duraud, "Influence of Oxygen Vacancies on the Electronic Structure of Yttrium Oxide," J. Am. Ceram. Soc., 74 [2] 358-64 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06887.x
  18. W. Kingery, H. Bowen, and D. Uhlmann, "Introduction to Ceramics," 2nd Ed., pp. 340-345, John Wiley & Sons Inc., New York, 1976.
  19. N. Saito, S. I. Matsusa, and T. Ikegami, "Fabrication of Transparent Yttria Ceramics at Low Temperature Using Carbonate-Derived Powder," J. Am. Ceram. Soc., 81 [8] 2023-28 (1998).
  20. R. W. Rice, "Monolithic and Composite Ceramic Machining Flaw-Microstructure-Strength Effects : Model Evaluation," J. Eur. Ceram Soc., 22 [9-10] 1411-24 (2002). https://doi.org/10.1016/S0955-2219(01)00488-5
  21. R. W. Rice, C. C. Wu, and F. Borchelt, "Hardness-Grain-Size Relations in Ceramics," J. Am. Ceram. Soc., 77 [110] 2539-53 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb04641.x
  22. R. W. Armstrong, E. L. Raymond, and R. R. Vandervoort, "Anomalous Increases in Hardness with Increase in Grain Size of Beryllia," J. Am. Ceram. Soc., 53 529-30 (1970). https://doi.org/10.1111/j.1151-2916.1970.tb16010.x
  23. S. Christopher and T. G. Nieh, "Hardness and Abrasion Resistance of Nano Crystalline Nickel Alloys Near the Hall-Petch Breakdown Regime," Mat. Res. Soc. Symp. Proc. 740 27-32 (2003).

피인용 문헌

  1. 하소이트리아 소결체의 특성과 플라즈마저항성 평가 vol.50, pp.5, 2013, https://doi.org/10.4191/kcers.2013.50.5.348