DOI QR코드

DOI QR Code

Antioxidant and Antihemolytic Activities of Ethanol Extracts of Carpesii Fructus and Farfarae Flos

학슬 및 관동화 에탄올 추출물의 항산화 및 항용혈 효과

  • Received : 2013.04.11
  • Accepted : 2013.05.07
  • Published : 2013.05.30

Abstract

Objectives : To develop a natural antioxidant and anti-hemolytic agents, we investigated the effects of ethanol extracts of Carpesii Fructus and Farfarae Flos. Methods : Aerial parts of Carpesii Fructus and Farfarae Flos were extracted with 80% ethanol. Antioxidant activity of Carpesii Fructus or Farfarae Flos extract was evaluated by employing three different assays, i.e., 1,1-diphenyl-2-picryl hydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzthiazoline-6-suphonic acid) diammonium (ABTS) scavenging and reducing power activities. Also, anti-hemolytic activity of Carpesii Fructus or Farfarae Flos extract was determined using [2,2'-azobis (2-methylpropionamidine) dihydrochloride (AAPH)]-induced hemolysis, glutathione (GSH) depletion and malondialdehyde (MDA) formation in normal rat red blood cells (RBC) or plasma. Results : The extracts obtained from Carpesii Fructus and Farfarae Flos dose-dependently increased the scavenging activity on DPPH- or ABTS-induced radicals and the reducing power activities. Carpesii Fructus and Farfarae Flos were similar to the scavenging activity and the reducing power of butylated hydroxy anisole effect at high concentration ($1,000{\mu}g/mL$). RBC oxidative hemolysis and plasma MDA formation induced by AAPH were significantly suppressed by the extracts of Carpesii Fructus and Farfarae Flos in a dose-dependent manner. Also, Carpesii Fructus and Farfarae Flos extracts prevented the depletion of cystosolic antioxidant GSH in RBCs. Carpesii Fructus generally had better than the free radical scavenging activity, the reducing power and anti-hemolytic effects of Farfarae Flos. Conclusions : These results suggest that Carpesii Fructus and Farfarae Flos may have value as the potential antioxidant and anti-hemolytic medicinal plant.

Keywords

References

  1. Wiseman H. Dietary influences on membrane function; impotent in protection against oxidative damage and disease. Nutr Biochem. 1996 ; 7 : 2-6. https://doi.org/10.1016/0955-2863(95)00152-2
  2. Bouayed J, Bohn T. Exogenous antioxidants - Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid Med Cell Longev. 2010 ; 3 : 228-37. https://doi.org/10.4161/oxim.3.4.12858
  3. Kawashima S. The possible role of lipoperoxide in aging. Nagoya J Med Sci. 1969 ; 32 : 303-26.
  4. Dicker EA, Crum AD, Calvert JT. Differences in the antioxidant mechanism of carmosine in the prescence of copper and iron. J Agric Food Chem. 1992 ; 40 : 756-9. https://doi.org/10.1021/jf00017a009
  5. Halliwell BH, Gutteridge JMC. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990 ; 186 : 1-85. https://doi.org/10.1016/0076-6879(90)86093-B
  6. Edgington, SM. As we live and breathe: free radicals and aging. Correlative evidence from a number of fields suggests they may be key. Bio/Technology. 1994 ; 12 : 37-40. https://doi.org/10.1038/nbt0194-37
  7. Vives Corrons JL, Miguel-Garcia A, Pujades MA, Miguel-Sosa A, Cambiazzo S, Linares M, Dibarrart MT, Calvo MA. Increased susceptibility of microcytic red blood cells to in vitro oxidative stress. Eur J Haematol. 1995 ; 55 : 327-31.
  8. Rice-Evans C, Omorphos SC, Baysal E. Sickle cell membranes and oxidative damage. Biochem J. 1986 ; 237 : 265-9. https://doi.org/10.1042/bj2370265
  9. Sadrzadeh SM, Graf E, Panter SS, Hallaway PE, Eaton JW. Hemoglobin. A biologic fenton reagent. J Biol Chem. 1984 ; 259 : 14354-6.
  10. Clemens MR, Ruess M, Bursa Z, Waller HD. The relationship between lipid composition of red blood cells and their susceptibility to lipid peroxidation. Free Radical Res Commun. 1987 ; 3 : 265-7. https://doi.org/10.3109/10715768709069792
  11. Lee CB. Coloured flora of Korea. 1st ed. Seoul : Hyangmoonsa. 2003 : 270-403.
  12. Taira J, Nanbu H, Ueda K. Nitric oxide-scavenging compounds in Agrimonia pilosa Ledeb on LPS-induced RAW264. 7 macrophages. Food Chem. 2009 ; 115 : 1221-7. https://doi.org/10.1016/j.foodchem.2009.01.030
  13. Lee JS, Min BS, Lee SM, Na MK, Kwon BM, Lee CO, Kim YH, Bae KH. Cytotoxic sesquiterpene lactones from Carpesium abrotanoides. Planta Med. 2002 ; 68 : 745-7. https://doi.org/10.1055/s-2002-33789
  14. Hwang SB, Chang MN, Garcia ML, Han QQ, Huang L, King VF, Kaczorowski GJ, Winquist RJ. L-652,469--a dual receptor antagonist of platelet activating factor and dihydropyridines from Tussilago farfara L. Eur J Pharmacol. 1987 ; 141 : 269-81. https://doi.org/10.1016/0014-2999(87)90272-X
  15. Hwangbo C, Lee HS, Park J, Choe J, Lee JH. The anti-inflammatory effect of tussilagone, from Tussilago farfara, is mediated by the induction of heme oxygenase-1 in murine macrophages. Int Immunopharmacol. 2009 ; 9 : 1578-84. https://doi.org/10.1016/j.intimp.2009.09.016
  16. Blois MS. Antioxidant determination by the use of a stable free radical. Nature. 1958 ; 181 : 1199-200. https://doi.org/10.1038/1811199a0
  17. Re R, Pelligrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad Biol Med. 1999 ; 26 : 1231-7. https://doi.org/10.1016/S0891-5849(98)00315-3
  18. Oyaizu M. Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr. 1986 ; 44 : 307-15. https://doi.org/10.5264/eiyogakuzashi.44.307
  19. Hseu YC, Chang WC, Hseu YT, Lee CY, Yech YJ, Chen PC, Chen JY, Yang HL. Protection of oxidative damage by aqueous extract from Antrodia camphorata mycelia in normal human erythrocytes. Life Sci. 2002 ; 71 : 469-82. https://doi.org/10.1016/S0024-3205(02)01686-7
  20. Lee HK, Kim JS, Kim NY, Kim MJ, Park SU, Yu CY. Antioxidant, antimutagenicity and anticancer activities of extracts from Circium japonicum var. ussurience Kitamura. Korean J Medicinal Crop Sci. 2003 ; 11 : 53-61.
  21. Kondo T, Hirose M, Kageyama K. Roles of oxidative stress and redox regulation in atherosclerosis. J Atheroscler Thromb. 2009 ; 6 : 532-8.
  22. Ko FN, Hsiao G, Kuo YH. Protection of oxidative hemolysis by demethyldiisoeugenol in normal and beta-thalassemic red blood cells. Free Radical Biol Med. 1997 ; 22 : 215-22. https://doi.org/10.1016/S0891-5849(96)00295-X
  23. Bengmark S, Mesa MD, Gil A. Plant-derived health: the effects of turmeric and curcuminoids. Nutr Hosp. 2009 ; 24 : 273-81.
  24. Yamamoto Y, Niki E, Eguchi J, Kamiya Y, Shimasaki H. Oxidation of biological membranes and its inhibition. Free radical chain oxidation of erythrocyte ghost membranes by oxygen. Biochim Biophys Acta. 1985 ; 819 : 29-36. https://doi.org/10.1016/0005-2736(85)90192-0