DOI QR코드

DOI QR Code

고온 급수에 의한 파워 플랜트 배관 침식-부식 거동

Erosion-Corrosion Behavior of Power Plant Pipe Caused by Hot Feed Water

  • 방성호 (한양대학교 자동차공학과) ;
  • 이진원 (한양대학교 자동차공학과) ;
  • 김태원 (한양대학교 기계공학부)
  • Bang, Sung-Ho (Dept. of Automotive Engineering, Hanyang Univ.) ;
  • Lee, Jin-Won (Dept. of Automotive Engineering, Hanyang Univ.) ;
  • Kim, Tae-Won (School of Mechanical Engineering, Hanyang Univ.)
  • 투고 : 2012.06.22
  • 심사 : 2013.02.23
  • 발행 : 2013.06.01

초록

본 연구에서는 급수 순환 시스템 중 동작 유체의 이송을 위해 사용하는 배관을 대상으로 관로 크기 및 고온 급수 환경에 따른 침식-부식 거동과 그 영향을 규명하고자 하였다. 이를 위해 일반적인 관로 소재인 철과 핵심 부식 인자인 산소의 화학반응식을 기반으로 Hayduk 과 Minhas 가 제안한 모델을 이용하여 침식-부식 해석을 실시하였다. 상용 유한요소해석 프로그램인 ABAQUS 를 사용하여 해석을 수행하였으며 배관의 직경 및 급수 온도를 변화시킴에 따른 침식-부식률을 평가할 수 있었다. 결과를 통해 급수 온도가 침식-부식률에 가장 큰 영향을 미치는 요인이 됨을 알 수 있었으며, 특히 $290^{\circ}C$ 급수에 노출된 스테인리스 316 강은 연간 $2.59{\mu}m$의 두께 손실이 발생할 것으로 예상되었다.

In this study, we tried to define the erosion-corrosion behavior together with the resulting effects on a pipe that is a part of a feed water circulation system according to the pipe size and hot feed water environment. An erosioncorrosion analysis was performed through the Hayduk and Minhas model based on the chemical reaction between iron and oxygen, an essential corrosive factor. The erosion-corrosion rate against the pipe diameter and feed water temperature was then evaluated by means of finite element analysis using ABAQUS. As shown in the results, the feed water temperature was the main factor influencing the erosion-corrosion rate; in particular, it was expected that the thickness of 316 stainless steel would decrease by $2.59{\mu}m$ every year in a hot water environment at $290^{\circ}C$.

키워드

참고문헌

  1. Chawla, V., 2011, High Temperature Corrosion and Erosion-Nanostructured and Conventional Coatings, LAP Lambert Academic Publishing, Herstellung, pp. 32-38.
  2. Stack, M.M., Song-Roehrle, Q., Stokk, F.H. and Wood, G.C., 1995, "Computer Simulation of Erosion- Corrosion Interactions at Elevated Temperatures," Wear, Vol. 181, No. 2, pp. 516-523.
  3. Korean Industrial Standard, 2009, KS D 0292-Test Method of Erosion-Corrosion on Pipe, Korean Agency for Technology and Standards, Seoul, pp. 1-8.
  4. Takahashi, Y., Shibamoto, H. and Inoue, K., 2008, "Study on Creep-Fatigue Life Prediction Methods for Low-Carbon Nitrogen-Controlled 316 Stainless Steel (316FR)," Nuclear Engineering and Design, Vol. 238, No. 2, pp. 322-335. https://doi.org/10.1016/j.nucengdes.2006.09.017
  5. Hayduk, W. and Minhas, B.S., 1982, "Correlations for Prediction of Molecular Diffusivities in Liquids," Canadian Journal of Chemical Engineering, Vol. 60, No. 2, pp. 295-299. https://doi.org/10.1002/cjce.5450600213
  6. Silverman, D.C., 1988, "Rotating Cylinder Electrode - Geometry Relationships for Prediction of Velocity- Sensitive Corrosion," Corrosion Science, Vol. 44, No. 1, pp. 42-49. https://doi.org/10.5006/1.3582024
  7. Silverman, D.C., 1984, "Rotating Cylinder Electrode for Velocity Sensitivity Training," Corrosion Science, Vol. 40, No. 5, pp. 220-226. https://doi.org/10.5006/1.3581945
  8. Nesic, S. and Postlethwaite, J., 1991, "Hydrodynamics of Disturbed Flow and Erosion-Corrosion. Part i - Single-Phase Flow Study," The Canadian Journal of Chemical Engineering, Vol. 69, No. 3, pp. 704-710. https://doi.org/10.1002/cjce.5450690312
  9. Davis, C. and Frawley, P., 2009, "Modelling of Erosion-Corrosion in Practical Geometries," Corrosion Science, Vol. 61, No. 4, pp. 769-775.
  10. Cengel, Y.A., 2006, Heat and Mass Transfer : A Practical Approach Third Edition, McGraw-Hill, New York, pp. 773-827.
  11. Online Material Information Resource (http://www.matweb.com)
  12. Stack, M.M., Abdelrahman, S.M. and Jana, B.D., 2010, "Some Perspectives on Modeling the Effect of Temperature on the Erosion-Corrosion of Fe in Aqueous Condition," Tribology International, Vol. 43, No. 12, pp. 2279-2297. https://doi.org/10.1016/j.triboint.2010.07.015
  13. Commercial Finite Element Analysis Program, ABAQUS Manual (version: 6.10-EF).
  14. Spirax Sarco(on deaerator air venting capacitypressurised deaerators) (http://www.spiraxsarco.com/)
  15. Jang, K., 2006, Theory of Optimization Design of Experiments, Jayu-academy, Paju, pp. 7-127.
  16. Mitsutaka, H.K., 2006, "Erosion Corrosion in Stainless Steel Pipe under Water Vapour Two-Phase Flow Conditions," Corrosion Science, Vol. 48, No. 3, pp. 617-624. https://doi.org/10.1016/j.corsci.2005.02.008
  17. Davis, J.R., 2007, ASM Specialty Handbook - Stainless Steels, ASM International, Materials Park, OH, pp. 32-38.