DOI QR코드

DOI QR Code

Dietary effect of royal jelly supplementation on epidermal levels of hydration, filaggrins, free amino acids and the related enzyme expression in UV irradiated hairless mice

자외선 조사와 병행된 로얄제리 식이 공급이 무모 생쥐의 표피 보습과 필라그린, 유리아미노산 함량 및 관련 대사 효소의 발현 변화에 미치는 영향

  • Min, Jihyun (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Lee, Yunju (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Han, Sang-Mi (Department of Agricultural Biology, National Institute of Agricultural Science and Technology) ;
  • Choi, Yunhi (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University)
  • 민지현 (경희대학교 동서의학대학원 의학영양학과) ;
  • 이윤주 (경희대학교 동서의학대학원 의학영양학과) ;
  • 한상미 (농촌진흥청 농업생물부) ;
  • 조윤희 (경희대학교 동서의학대학원 의학영양학과)
  • Received : 2012.12.13
  • Accepted : 2013.04.04
  • Published : 2013.04.30

Abstract

Ultraviolet (UV) irradiation reduces epidermal hydration, which is paralleled by the reduction of natural moisturizing factors (NMFs). Of various NMFs, free amino acids (AAs) are major constituents generated by filaggrin degradation. In this study, we attempted to determine whether dietary supplementation of royal jelly (RJ) in UV-irradiated mice can alters epidermal levels of hydration, filaggrins, and free AAs as well as of peptidylarginine deiminase-3 (PAD3), an enzyme involved in filaggrin degradation processes. Albino hairless mice were fed either a control diet (group UV+: UV irradiated control) or diets with 1% RJ harvested from different areas in Korea (groups RJ1, RJ2, and RJ3) or imported from China (group RJ4) for six weeks in parallel with UV irradiation. A normal control group (group UV-) was fed a control diet without UV irradiation for six weeks. Reduced epidermal levels of hydration, total filaggrins, and PAD3 were observed in group UV+; in group RJ1, these levels were increased to a level similar to that of group UV-. In addition, profilaggrins, two repeat intermediates (2RI), a precursor with two filaggrin repeats, and filaggrin were increased. Although no alteration of AAs was observed in any of the groups, and glutamate and serine, major AAs of NMF in group RJ1 were higher than in group UV+. Despite the increased levels of PAD3, epidermal levels of hydration, filaggrins, glutamate, and serine in groups RJ2, RJ3, and RJ4 were similar to those in group UV+. Dietary supplementation of RJ1 improves epidermal hydration in parallel with enhanced expression and degradation of filaggrin, but not by increased protein expression of PAD3, along with increased generation of glutamate and serine.

본 연구에서는 자외선 조사에 의한 피부 광노화 유도와 함께 산지 별 국내산 및 중국산 로얄제리 식이를 6주간 공급한 무모 생쥐 표피의 필라그린과 유리 아미노산 함량 및 관련 대사 효소의 발현 변화를 정상대조군인 UV - 군 및 자외선 조사군인 UV + 군과 비교 분석하였고 그 결과는 다음과 같다. 1) UV + 군의 필라그린과 중간 생성물 및 profilaggrin을 포함한 총 필라그린 함량은 UV - 군에 비하여 유의적으로 감소하였다. RJ1군의 총 필라그린 함량이 UV + 군에 비하여 유의적으로 높게 나타났고 RJ2, RJ3 및 RJ4군에서는 UV + 군과 유사하거나 낮았다. 2) PAD3 발현은 UV + 군의 발현이 UV - 군에 비하여 유의적으로 감소하였고 로얄제리 공급군의 PAD3 발현은 모두 UV + 군에 비하여 유의적으로 높았다. 다만 각 로얄제리를 섭취시킨 군 사이에서 군간 유의성은 없었다. 3) 총 유리 아미노산 함량은 군간 유의적인 차이는 보이지 않았다. 그러나 개별 유리 아미노산 함량 변화를 분석한 결과, UV + 군에서 glutamate와 serine의 함량이 UV - 군에 비해 낮은 경향을 보였다. 반면 RJ1군의 glutamate와 serine의 함량은 UV + 군에 비해 유의적으로 높았으며 RJ2와 RJ3군은 serine의 함량이 UV + 군에 비해 다소 높았다. 결론적으로 RJ1의 식이는 표피의 필라그린 함량과 관련 대사 효소의 발현을 높이고 그에 따라 표피에서 천연보습인자로서 보습 증진에 크게 기여하는 glutamate와 serine의 함량을 증가시킴으로써 자외선 조사로 인해 저하된 피부 보습 능력을 회복시키는 역할을 하는 것으로 여겨진다.

Keywords

References

  1. Brown SJ, McLean WH. Eczema genetics: current state of knowledge and future goals. J Invest Dermatol 2009; 129(3): 543-552 https://doi.org/10.1038/jid.2008.413
  2. Elias PM. Stratum corneum defensive functions: an integrated view. J Invest Dermatol 2005; 125(2): 183-200 https://doi.org/10.1111/j.0022-202X.2005.23668.x
  3. Rawlings AV, Harding CR. Moisturization and skin barrier function. Dermatol Ther 2004; 17 Suppl 1: 43-48 https://doi.org/10.1111/j.1396-0296.2004.04S1005.x
  4. Verdier-Sévrain S, Bonté F. Skin hydration: a review on its molecular mechanisms. J Cosmet Dermatol 2007; 6(2): 75-82 https://doi.org/10.1111/j.1473-2165.2007.00300.x
  5. Coderch L, López O, de la Maza A, Parra JL. Ceramides and skin function. Am J Clin Dermatol 2003; 4(2): 107-129 https://doi.org/10.2165/00128071-200304020-00004
  6. Steven AC, Steinert PM. Protein composition of cornified cell envelopes of epidermal keratinocytes. J Cell Sci 1994; 107(Pt 2): 693-700
  7. Clar EJ, Fourtanier A. Pyrrolidone carboxylic acid and the skin. Int J Cosmet Sci 1981; 3(3): 101-113 https://doi.org/10.1111/j.1467-2494.1981.tb00275.x
  8. Kezic S, Kammeyer A, Calkoen F, Fluhr JW, Bos JD. Natural moisturizing factor components in the stratum corneum as biomarkers of filaggrin genotype: evaluation of minimally invasive methods. Br J Dermatol 2009; 161(5): 1098-1104 https://doi.org/10.1111/j.1365-2133.2009.09342.x
  9. Katagiri C, Sato J, Nomura J, Denda M. Changes in environmental humidity affect the water-holding property of the stratum corneum and its free amino acid content, and the expression of filaggrin in the epidermis of hairless mice. J Dermatol Sci 2003; 31(1): 29-35 https://doi.org/10.1016/S0923-1811(02)00137-8
  10. Rawlings AV, Scott IR, Harding CR, Bowser PA. Stratum corneum moisturization at the molecular level. J Invest Dermatol 1994; 103(5): 731-741 https://doi.org/10.1111/1523-1747.ep12398620
  11. Tabachnick J, LaBadie JH. Studies on the biochemistry of epidermis. IV. The free amino acids, ammonia, urea, and pyrrolidone carboxylic acid content of conventional and germ-free albino guina pig epidermia. J Invest Dermatol 1970; 54(1): 24-31 https://doi.org/10.1111/1523-1747.ep12551492
  12. Scott IR, Harding CR, Barrett JG. Histidine-rich protein of the keratohyalin granules. Source of the free amino acids, urocanic acid and pyrrolidone carboxylic acid in the stratum corneum. Biochim Biophys Acta 1982; 719(1): 110-117 https://doi.org/10.1016/0304-4165(82)90314-2
  13. Jacobson TM, Yüksel KU, Geesin JC, Gordon JS, Lane AT, Gracy RW. Effects of aging and xerosis on the amino acid composition of human skin. J Invest Dermatol 1990; 95(3): 296-300 https://doi.org/10.1111/1523-1747.ep12484970
  14. Fleckman P, Dale BA, Holbrook KA. Profilaggrin, a high-molecular- weight precursor of filaggrin in human epidermis and cultured keratinocytes. J Invest Dermatol 1985; 85(6): 507-512 https://doi.org/10.1111/1523-1747.ep12277306
  15. Sandilands A, Sutherland C, Irvine AD, McLean WH. Filaggrin in the frontline: role in skin barrier function and disease. J Cell Sci 2009; 122(Pt 9): 1285-1294 https://doi.org/10.1242/jcs.033969
  16. Presland RB. Function of filaggrin and caspase-14 in formation and maintenance of the epithelial barrier. Dermatol Sin 2009; 27 (1): 1-14
  17. Senshu T, Akiyama K, Nomura K. Identification of citrulline residues in the V subdomains of keratin K1 derived from the cornified layer of newborn mouse epidermis. Exp Dermatol 1999; 8(5): 392-401 https://doi.org/10.1111/j.1600-0625.1999.tb00388.x
  18. Kanno T, Kawada A, Yamanouchi J, Yosida-Noro C, Yoshiki A, Shiraiwa M, Kusakabe M, Manabe M, Tezuka T, Takahara H. Human peptidylarginine deiminase type III: molecular cloning and nucleotide sequence of the cDNA, properties of the recombinant enzyme, and immunohistochemical localization in human skin. J Invest Dermatol 2000; 115(5): 813-823 https://doi.org/10.1046/j.1523-1747.2000.00131.x
  19. Thulin CD, Walsh KA. Identification of the amino terminus of human filaggrin using differential LC/MS techniques: implications for profilaggrin processing. Biochemistry 1995; 34(27): 8687- 8692 https://doi.org/10.1021/bi00027a018
  20. McGrath JA, Uitto J. The filaggrin story: novel insights into skinbarrier function and disease. Trends Mol Med 2008; 14(1): 20-27 https://doi.org/10.1016/j.molmed.2007.10.006
  21. Harding CR, Watkinson A, Rawlings AV, Scott IR. Dry skin, moisturization and corneodesmolysis. Int J Cosmet Sci 2000; 22(1): 21-52 https://doi.org/10.1046/j.1467-2494.2000.00001.x
  22. Koyama J, Horii I, Kawasaki K, Nakayama Y, Morikawa Y, Mitsui T. Free amino acids of stratum corneum as a biochemical marker to evaluate dry skin. J Soc Cosmet Chem 1984; 35(4): 183-195
  23. Kim H, Lim YJ, Park JH, Cho Y. Dietary silk protein, sericin, improves epidermal hydration with increased levels of filaggrins and free amino acids in NC/Nga mice. Br J Nutr 2012; 108(10): 1726-1735 https://doi.org/10.1017/S0007114511007306
  24. Legat FJ, Wolf P. Photodamage to the cutaneous sensory nerves: role in photoaging and carcinogenesis of the skin? Photochem Photobiol Sci 2006; 5(2): 170-176 https://doi.org/10.1039/b508856a
  25. Helfrich YR, Sachs DL, Voorhees JJ. Overview of skin aging and photoaging. Dermatol Nurs 2008; 20(3): 177-183
  26. Haratake A, Uchida Y, Schmuth M, Tanno O, Yasuda R, Epstein JH, Elias PM, Holleran WM. UVB-induced alterations in permeability barrier function: roles for epidermal hyperproliferation and thymocyte-mediated response. J Invest Dermatol 1997; 108 (5): 769-775 https://doi.org/10.1111/1523-1747.ep12292163
  27. Horii I, Nakayama Y, Obata M, Tagami H. Stratum corneum hydration and amino acid content in xerotic skin. Br J Dermatol 1989; 121(5): 587-592 https://doi.org/10.1111/j.1365-2133.1989.tb08190.x
  28. Viuda-Martos M, Ruiz-Navajas Y, Fernandez-Lopez J, Perez-Alvarez JA. Functional properties of honey, propolis, and royal jelly. J Food Sci 2008; 73(9): R117-R124 https://doi.org/10.1111/j.1750-3841.2008.00966.x
  29. Kim JK, Son JH, Oh HS. Analysis of organic acids in honey and royal jelly. Korean J Apic 1989; 4(2): 105-111
  30. Kim JG, Son JH. Analysis of amino acids in royal jelly. Korean J Apic 1991; 6(2): 76-80
  31. Kim J, Lee Y, Cho Y. Effects of dietary royal jelly on epidermal generation of ceramides from acidic sphingomyelin and gluco sylceramides in UV-irradiated hairless mice. Curr Top Nutraceutical Res. Forthcoming 2013
  32. Kang TH, Park HM, Kim YB, Kim H, Kim N, Do JH, Kang C, Cho Y, Kim SY. Effects of red ginseng extract on UVB irradiation- induced skin aging in hairless mice. J Ethnopharmacol 2009; 123(3): 446-451 https://doi.org/10.1016/j.jep.2009.03.022
  33. Ginger RS, Blachford S, Rowland J, Rowson M, Harding CR. Filaggrin repeat number polymorphism is associated with a dry skin phenotype. Arch Dermatol Res 2005; 297(6): 235-241 https://doi.org/10.1007/s00403-005-0590-8
  34. Nachat R, Méchin MC, Takahara H, Chavanas S, Charveron M, Serre G, Simon M. Peptidylarginine deiminase isoforms 1-3 are expressed in the epidermis and involved in the deimination of K1 and filaggrin. J Invest Dermatol 2005; 124(2): 384-393 https://doi.org/10.1111/j.0022-202X.2004.23568.x
  35. Tarcsa E, Marekov LN, Mei G, Melino G, Lee SC, Steinert PM. Protein unfolding by peptidylarginine deiminase. Substrate specificity and structural relationships of the natural substrates trichohyalin and filaggrin. J Biol Chem 1996; 271(48): 30709-30716 https://doi.org/10.1074/jbc.271.48.30709
  36. Kambayashi H, Yamashita M, Odake Y, Takada K, Funasaka Y, Ichihashi M. Epidermal changes caused by chronic low-dose UV irradiation induce wrinkle formation in hairless mouse. J Dermatol Sci 2001; 27 Suppl 1: S19-S25 https://doi.org/10.1016/S0923-1811(01)00113-X
  37. Matsumura Y, Ananthaswamy HN. Toxic effects of ultraviolet radiation on the skin. Toxicol Appl Pharmacol 2004; 195(3): 298- 308 https://doi.org/10.1016/j.taap.2003.08.019
  38. Kim H, Park KH, Yeo JH, Lee KG, Jeong DH, Kim SH, Cho Y. Dietary effect of silk protein sericin or fibroin on plasma and epidermal amino acid concentration of NC/Nga mice. Korean J Nutr 2006; 39(6): 520-528
  39. Wolfersberger MG, Tabachnick J, Finkelstein BS, Levin M. Lpyrrolidone carboxylic acid content in mammalian epidermis and other tissues. J Invest Dermatol 1973; 60(5): 278-281 https://doi.org/10.1111/1523-1747.ep12722981
  40. Ramadan MF, Al-Ghamdi A. Bioactive compounds and healthpromoting properties of royal jelly: a review. J Funct Foods 2012; 4(1): 39-52 https://doi.org/10.1016/j.jff.2011.12.007
  41. Cho Y. Development of royal jelly as a functional dietary source for anti-aging and anti-oxidation of skin. Suwon: Rural Development Administration; 2009
  42. Kim JG, Son JH, Lee SH. Comparative research on the ingredient or royal jelly produced in south and north Korea. Korean J Apic 1993; 8(2): 170-178
  43. Park HM, Cho MH, Cho Y, Kim SY. Royal jelly increases collagen production in rat skin after ovariectomy. J Med Food 2012; 15(6): 568-575 https://doi.org/10.1089/jmf.2011.1888

Cited by

  1. A study of facial wrinkles improvement effect of veratric acid from cauliflower mushroom through photo-protective mechanisms against UVB irradiation vol.308, pp.3, 2016, https://doi.org/10.1007/s00403-016-1633-z
  2. Epidermal Hydration Is Improved by Enhanced Ceramide Metabolism in Aged C57BL/6J Mice After Dietary Supplementation of Royal Jelly vol.18, pp.9, 2015, https://doi.org/10.1089/jmf.2014.3304
  3. Dietary effect of green tea extract on epidermal levels of skin pH related factors, lactate dehydrogenase protein expression and activity in UV-irradiated hairless mice vol.49, pp.2, 2016, https://doi.org/10.4163/jnh.2016.49.2.63
  4. 자외선 조사와 병행된 녹차추출물 식이공급이 무모생쥐의 표피보습 개선 및 유리아미노산 생성 관련 대사에 미치는 영향 vol.49, pp.5, 2016, https://doi.org/10.4163/jnh.2016.49.5.269