DOI QR코드

DOI QR Code

Physiological Function of a DNA-Binding Protein from Starved Cells in Combating Diverse External Stresses in Escherichia coli

대장균 세포 내 다양한 외부 스트레스에 대한 DPS 단백질의 생리적 기능

  • Lee, Joo Hyeong (Senior High School of Gyeongsang National University) ;
  • Cheong, Su Jin (Senior High School of Gyeongsang National University) ;
  • Oh, Hun Taek (Division of Applied Life Science, Gyeongsang National University) ;
  • Kim, Woe Yeon (Division of Applied Life Science, Gyeongsang National University) ;
  • Jung, Young Jun (Division of Applied Life Science, Gyeongsang National University)
  • 이주형 (경상대학교 사범대학 부설고등학교) ;
  • 정수진 (경상대학교 사범대학 부설고등학교) ;
  • 오훈택 (경상대학교 응용생명과학부) ;
  • 김외연 (경상대학교 응용생명과학부) ;
  • 정영준 (경상대학교 응용생명과학부)
  • Received : 2013.02.01
  • Accepted : 2013.03.25
  • Published : 2013.04.30

Abstract

The DNA-binding protein from starved cells (DPS), originally identified as a DNA binding protein in Escherichia coli, is known to play an important role in DNA protection. The aim of this study was to evaluate the functional roles of DPS in E. coli against various kinds of external stresses by comparing the properties of wild-type E. coli cells and dps knockout mutant E. coli (${\Delta}dps$) cells. Under various stress conditions, we measured the cell growth of the wild-type E. coli and the dps knockout mutant E. coli (${\Delta}dps$) cells using a UV spectrophotometer. The growth rate of the cells was compared to investigate the functional roles of the DPS protein in E. coli. In comparison to the properties of the wild-type E. coli cells, the dps knockout mutant E. coli (${\Delta}dps$) cells showed highly sensitive phenotypes under various stress conditions, such as heat shock, acidic pH, nutrient deficiency, and different concentrations of reactive oxygen species (ROS), suggesting that DPS plays key roles in E. coli in combating diverse external stresses. The DPS DNA-binding protein in E. coli plays crucial roles in bacterial cell growth and in the protection of the cells from environmental stresses by tightly binding and preserving their DNA molecules.

대장균에서 DNA 결합 단백질로 확인된 DNA-binding Protein from Staved cells (DSP)는 DNA를 보호하는 중요한 기능을 한다는 것을 보여주었다. 이 연구의 목표는 야생형 대장균과 dps 유전자 결손 대장균(${\Delta}dps$ E.coli)의 특성 비교를 통해 여러 종류의 스트레스에 대해 대장균에서 DPS의 기능적 역할을 설명하는 것이다. 다양한 스트레스 상태에서 자외선 흡광도계(UV-spectrophotometer)를 이용하여 야생형 대장균과 dps 유전자 결손 대장균의 세포성장을 측정하였으며, 각각의 대장균 세포 성장 속도를 비교함으로써 우리는 대장균에 존재하는 DPS 단백질의 기능적 역할을 확인하였다. 야생형 대장균에 비해 dps 유전자 결손 대장균은 영양분 결핍, 산성화, 열충격, 다양한 활성산소종 스트레스들에 민감한 현상을 나타내었으며, 이것은 DPS가 다양한 극단적인 스트레스에 중요한 기능을 한다는 것을 제안하였다. 결론적으로 대장균의 DPS는 다양한 환경적인 스트레스로부터 DNA와 강하게 결합하여 유지함으로써 세포를 보호하고 세포성장에 결정적인 기능을 한다는 것을 증명하였다.

Keywords

References

  1. Almiron, M., Link, A. J., Furlong, D. and Kolter, R. 1992. A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev 6, 2646-2654. https://doi.org/10.1101/gad.6.12b.2646
  2. Altuvia, S., Almiron, M., Huisman, G., Kolter, R. and Storz, G. 1994. The DPS promoter is activated by OxyR during growth and by IHF and ${\sigma}^s$ in stationary phase. Mol Microbiol 13, 265-272. https://doi.org/10.1111/j.1365-2958.1994.tb00421.x
  3. Brown, J. L., Ross, T., McMeekin, T. A. and Nichols, P. D. 1997. Acid habituation of Escherichia coli and the potential role of cytoplasmic fatty acids in low pH tolerance. Int J Food Microbiol 37, 163-173. https://doi.org/10.1016/S0168-1605(97)00068-8
  4. Calhoun, L. N. and Kwon, Y. M. 2011. Structure, function and regulation of the DNA-binding protein DPS and its role in acid and oxidative stress resistance in Escherichia coli. J Appl Microbiol 110, 375-386. https://doi.org/10.1111/j.1365-2672.2010.04890.x
  5. Castanie-Cornet, M. P., Penfound, T. A., Smith, D., Elliott, J. F. and Foster, J. W. 1999. Control of acid resistance in Escherichia coli. J Bacteriol 181, 3525-3535.
  6. Chiancone, E. and Ceci, P. 2010. Role of DPS (DNA-binding proteins from starved cells) aggregation on DNA. Front Biosci 15, 122-131. https://doi.org/10.2741/3610
  7. Chiancone, E. and Ceci, P. 2010. The multifaceted capacity of DPS proteins to combat bacterial stress conditions: detoxification of iron and hydrogen peroxide and DNA binding. Biochim Biophys Acta 1800, 798-805. https://doi.org/10.1016/j.bbagen.2010.01.013
  8. Choi, S. H., Baumler, D. J. and Kaspar, C. W. 2000. Contribution of DPS to acid stress tolerance and oxidative stress tolerance in Escherichia coli O157:H7. Appl Environ Microbiol 66, 3911-3916. https://doi.org/10.1128/AEM.66.9.3911-3916.2000
  9. Drlica, K. and Rouviere-Yaniv, J. 1987. Histonelike proteins of bacteria. Microbiol Rev 51, 301-319.
  10. Grant, R. A., Filman, D. J., Finkel, S. E., Kolter, R. and Hogle, J. M. 1998. The crystal structure of DPS, a ferritin homolog that binds and protects DNA. Nat Struct Biol 5, 294-303. https://doi.org/10.1038/nsb0498-294
  11. Haikarainen, T. and Papaqeorqiou, A. C. 2010. DPS-like proteins: structural and functional insights into a versatile protein family. Cell Mol Life Sci 67, 341-351. https://doi.org/10.1007/s00018-009-0168-2
  12. Hong, Y., Wang, G. E. and Maier, R. J. 2006. Helicobacter hepaticus DPS protein plays an important role in protecting DNA from oxidative damage. Free Radic Res 40, 597-605. https://doi.org/10.1080/10715760600618882
  13. Ishikawa, T., Mizunoe, Y., Kawabata, S., Takade, A., Harada, M., Wai, S. N. and Yoshida, S. 2003. The iron-binding protein DPS confers hydrogen peroxide stress resistance to Campylobacter jejuni. J Bacteriol 185, 1010-1017. https://doi.org/10.1128/JB.185.3.1010-1017.2003
  14. Jeong, K. C., Baumler, D. J. and Kaspar, C. W. 2006. DPS expression in Escherichia coli O157:H7 requires an extended-10 region and is affected by the cAMP receptor protein. Biochim Biophys Acta 1759, 51-59. https://doi.org/10.1016/j.bbaexp.2006.02.001
  15. Jeong, K. C., Hung, K. F., Baumler, D. J., Byrd, J. J. and Kaspar, C. W. 2008. Acid stress damage of DNA is prevented by DPS binding in Escherichia coli O157:H7. BMC Microbiol 8, 181. https://doi.org/10.1186/1471-2180-8-181
  16. Jordan, K. N., Oxford, L. and O'Byrne, C. P. 1999. Survival of low-pH stress by Escherichia coli O157:H7: correlation between alterations in the cell envelope and increased acid tolerance. Appl Environ Microbiol 65, 3048-3055.
  17. Lindahl, T. and Nyberg, B. 1972. Rate of depurination of native deoxyribonucleic acid. Biochemistry 11, 3610-3618. https://doi.org/10.1021/bi00769a018
  18. Malone, A. S., Chung, Y. K. and Yousef, A. E. 2006. Genes of Escherichia coli O157:H7 that are involved in high-pressure resistance. Appl Environ Microbiol 72, 2661-2671. https://doi.org/10.1128/AEM.72.4.2661-2671.2006
  19. Martinez, A. and Kolter, R. 1997. Protection of DNA during oxidative stress by the nonspecific DNA-binding protein DPS. J Bacteriol 179, 5188-5194.
  20. McGhee, J. D. and Felsenfeld, G. 1980. Nucleosome structure. Annu Rev Biochem 49, 1115-1156. https://doi.org/10.1146/annurev.bi.49.070180.005343
  21. Miller, J. H. 1972. Experiments in olecular Genetics. Cold Spring Harbor Labortory Cold Spring Hatbor NY 466.
  22. Nair, S. and Finkel, S. E. 2004. DPS protects cells against multiple stresses during stationary phase. J Bacteriol 186, 4192-4198. https://doi.org/10.1128/JB.186.13.4192-4198.2004
  23. Ren, B., Tibbelin, G., Kajino, T., Asami, O and Ladenstein, R. 2003. The multi-layered structure of DPS with a novel di-nuclear ferroxidase center. J Mol Biol 329, 467-477. https://doi.org/10.1016/S0022-2836(03)00466-2
  24. Saris, Per E. J., Paulin, Lars G. and Uhlen, Mathias.1990. Direct amplication of DNA from colonies of Bacillus subtilis and Escherichia coli by the polymerase chain reaction. J Microbiol Methods 11, 121-126. https://doi.org/10.1016/0167-7012(90)90012-U
  25. Schmidt, R., Zahn, R., Bukau, B. and Mogk, A. 2009. ClpS is the recognition component for Escherichia coli substrates of the N-end rule degradation pathway. Mol Microbiol 72, 506-517. https://doi.org/10.1111/j.1365-2958.2009.06666.x
  26. Storz, G. and Imlay, J. A. 1999. Oxidative stress. Curr Opin Microbiol 2, 188-194. https://doi.org/10.1016/S1369-5274(99)80033-2
  27. Wolf, S. G., Frenkiel, D., Arad, T., Finkel, S. E., Kolter, R. and Minsky, A. 1999. DNA protection by stress-induced biocrystallization. Nature 400, 83-85. https://doi.org/10.1038/21918
  28. Yu, M. J., Ren, J., Zeng, Y. L., Zhou, S. N. and Lu, Y. J. 2009. The Legionella pneumophila DPS homolog is regulated by iron and involved in multiple stress tolerance. J Basic Microbiol 49, S79-S86. https://doi.org/10.1002/jobm.200800357
  29. Zhao, G., Ceci, P., Ilari, A., Giangiacomo, L., Laue, T. M., Chiancone, E. and Chasteen, N. D. 2002. Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. J Biol Chem 277, 27689-27696. https://doi.org/10.1074/jbc.M202094200