DOI QR코드

DOI QR Code

Comparison of Potential CO2 Reduction and Marginal Abatement Costs across Sectors and Provinces in the Chinese Manufacturing Industries

중국 제조업 부문별 CO2 잠재감축량 및 한계저감비용 지역 간 비교 분석

  • Jin, Yingmei (Department of International Trade, Inha University) ;
  • Lee, Myunghun (Department of International Trade, Inha University)
  • 김영미 (인하대학교 국제통상학부) ;
  • 이명헌 (인하대학교 국제통상학부)
  • Received : 2013.08.19
  • Accepted : 2013.09.02
  • Published : 2013.09.30

Abstract

To assess the feasibility of 'low carbon, sustainable growth' policy pursued of the Chinese government, this paper first measures technical efficiency, $CO_2$ shadow prices, and indirect Morishima elasticity of substitution between capital and energy for 24 of manufacturing sectors in Beijing and Chongqing, in which China launched pilot carbon emissions trading scheme, by estimating the input distance function. Based on these results, then the potential for $CO_2$ reduction, cost savings from emissions trading, and the effectiveness of capital investment in reducing $CO_2$ are compared across industries and provinces. In 2010, manufacturing industries in Beijing and Chongqing could potentially reduce the largest $CO_2$ emissions, amounting 5.2 and 17 million tons, respectively, by achieving 100% technical efficiency. While, on average, Chongqing has a comparative advantage in the cost savings from carbon trading over Beijing, Beijing is more likely to reduce $CO_2$ by expanding capital investment.

본 논문에서는 중국 정부가 추진하고 있는 '저탄소 지속가능한 성장'의 실현가능성을 개진하는 데 있어서 탄소배출권 거래 시범지역으로 지정된 7개 지역 가운데 북경시, 중경시 제조업 24개 부문을 대상으로 각 지역별로 투입물거리함수를 추정하여 기술효율성, $CO_2$ 암묵가격, 투입요소 간 간접 모리시마 대체탄력성 등을 측정하여 이를 토대로 업종 간, 지역 간 최대 $CO_2$ 잠재감축량, 탄소배출권 거래의 비용절감효과, 자본 투자로 인한 $CO_2$ 감축의 잠재적 성과 등을 비교, 분석하였다. 2010년 현재 북경시, 중경시 제조업은 100% 기술효율성 달성을 통하여 $CO_2$ 배출량을 각각 최대 516만 톤, 1,704만 톤까지 감축가능한 것으로 추산되었다. 평균적으로 탄소배출권 거래의 한계저감비용 절감효과는 중경시에서, 자본 투자의 $CO_2$ 감축효과 가능성은 북경시에서 더 높게 나타났다.

Keywords

References

  1. 김영미, 이명헌, "중국 화력발전산업의 $CO_2$ 암묵가격 및 잠재감축량, 연료에 대한 대 체가능성 분석", 자원․ 환경경제연구, 제22권 제1호, 2013, pp. 77-98.
  2. 周叔莲, 裴叔平, 陈树勋, 中国产业政策硏究, 经济管理出版社, 1990.
  3. Aigner, D. and S. Chu, "On Estimating the Industry Production Function," American Economic Review, Vol. 58, 1968, pp. 826-839.
  4. Blackorby, C. and R. R. Russell, "Will the Real Elasticity of Substitution Please Stand Up? (A Comparison of the Allen/Uzawa and Morishima Elasticities)," American Economic Review, Vol. 79, 1989, pp. 882-888.
  5. Coggins, J. S. and J. R. Swinton, "The Price of Pollution: A Dual Approach to Valuing $SO_2$ Allowance," Journal of Environmental Economics and Management, Vol. 30, 1996, pp. 58-72. https://doi.org/10.1006/jeem.1996.0005
  6. De Cara, S. and P. Jayet, "Marginal Abatement Costs of Greenhouse Gas Emissions from European Agriculture, Cost Effectiveness, and the EU Non-ETS Burden Sharing Agreement," Ecological Economics, Vol. 70, 2011, pp. 1680-1690. https://doi.org/10.1016/j.ecolecon.2011.05.007
  7. Farrell, M. J., "The Measurement of Productive Efficiency," Journal of Royal Statistical Society, Vol. 120, 1957, pp. 253-290. https://doi.org/10.2307/2343100
  8. Fare, R. and S. Grosskopf, "A Distance Function Approach to Price Efficiency," Journal of Public Economics, Vol. 43, 1990, pp. 123-126. https://doi.org/10.1016/0047-2727(90)90054-L
  9. Fare, R., C. A. K. Lovell, and S. Yaisawarng, "Derivation of Shadow Prices for Undesirable Outputs: A Distance Function Approach," Review of Economics and Statistics, Vol. 75, 1993, pp. 374-380. https://doi.org/10.2307/2109448
  10. Färe, R., S. Grosskopf, C. A. K Lovell, D. Noh, and W. Weber, "Characteristics of a Polluting Technology: Theory and Practice," Journal of Econometrics, Vol. 126, 2005, pp. 469-492. https://doi.org/10.1016/j.jeconom.2004.05.010
  11. Grosskopf, S., K. Hayes, and J. Hirschberg, "Fiscal Stress and Production of Public Safety: A Distance Function Approach," Journal of Public Economics, Vol. 57, 1995, pp. 277-296. https://doi.org/10.1016/0047-2727(94)01445-T
  12. Hailu, A. and T. S. Veeman, "Environmentally Sensitive Productivity Analysis of the Canadian Pulp and Paper Industry, 1959-1994: An Input Distance Function Approach," Journal of Environmental Economics and Management, Vol. 40, 2000, pp. 189-210. https://doi.org/10.1006/jeem.1999.1122
  13. Jacobsen, S. E., "On Shephard's Duality Theorem," Journal of Economic Theory, Vol. 4, 1972, pp. 458-464. https://doi.org/10.1016/0022-0531(72)90133-0
  14. Kwon, O. S. and W. C. Yun, "Estimation of the Marginal Abatement Costs of Aairborne Pollutants in Korea' Power Generation Sector," Energy Economics, Vol. 21, 1999, pp. 547-560. https://doi.org/10.1016/S0140-9883(99)00021-3
  15. Lee, M., "Potential Cost Savings from Internal/External $CO_2$ Emissions Trading in the Korean Electric Power Industry," Energy Policy, Vol. 39, 2011, pp. 6162-6167. https://doi.org/10.1016/j.enpol.2011.07.016
  16. Lee, M. and N. Zhang, "Technical Efficiency, Shadow Price of Carbon Dioxide Emissions, and Substitutability for Energy in the Chinese Manufacturing Industries," Energy Economics, Vol. 34, 2012, pp. 1492-1497. https://doi.org/10.1016/j.eneco.2012.06.023
  17. Matsushita, K. and F. Yamane, "Pollution from the Electric Power Sector in Japan and Efficient Pollution Reduction," Energy Economics, Vol. 34, 2012, pp. 1124-1130. https://doi.org/10.1016/j.eneco.2011.09.011
  18. Park, H. and J. Lim, "Valuation of Marginal $CO_2$ Abatement Options for Electric Power Plants," Energy policy, Vol. 37, 2009, pp. 1834-1841. https://doi.org/10.1016/j.enpol.2009.01.007
  19. Shephard, R. W., Theory of Cost and Production Functions, Princeton: Princeton University Press, 1970.
  20. Wang, Q., Q. Cui, D. Zhou, and S. Wang, "Marginal Abatement Costs of Carbon Dioxide in China: A Nonparametric Analysis," Energy Procedia, Vol. 5, 2011, pp. 2316-2320. https://doi.org/10.1016/j.egypro.2011.03.398
  21. Wei, C., J. Ni, and L. Du, "Regional Allocation of Carbon Dioxide Abatement in China," China Economic Review, Vol. 23, 2012, pp. 552-565. https://doi.org/10.1016/j.chieco.2011.06.002