핵의학 동적 신장팬텀시스템 개발 적용의 유용성 평가

Development of Dynamic Kidney Phantom System and its Evaluation of Usability of Application in Nuclear Medicine

  • 투고 : 2013.02.12
  • 심사 : 2013.03.07
  • 발행 : 2013.03.29

초록

핵의학 검사 중 동적신장검사는 신장기능을 평가하는 가장 대표적인 검사법으로 방사성의약품을 이용하여 시간에 따른 신장의 기능을 평가하고 소변이 배설에 이르기까지의 질환 평가에 유용하다. 이러한 검사영상의 질 평가 및 정량분석에서 현재 상용화 된 팬텀은 정적 상황만 재현하고 평가할 수 있기 때문에 동적 팬텀을 통한 시간에 따른 신장의 기능적 상황과 혈류속도, 방사성의약품의 주입량에 따른 다양한 차이 등을 확인 할 수 있는 연구가 미비한 상황이다. 그러므로 본 연구를 통해 동적 신장팬텀시스템을 제작하여 신장의 동적 흐름을 통한 영상을 재현함으로써 핵의학에서 영상학적으로 유용성을 평가하고자 한다. 신장팬텀은 정상 성인 신장을 기준으로 제작하였고, 동적 상황을 재현하기 위하여 혈류의 속도를 조절할 수 있는 정량펌프를 적용하였으며, $^{99m}Tc$-pertechnate를 신장팬텀에 방사성의약품이 집적되고 방광으로 배설되도록 제작하였다. 사용된 방사성의약품은 각 신장팬텀에 각각 주입되도록 하였으며, 주입속도, 방사성의약품, 좌우 신장 팬텀에 다른 주입속도에 따른 변화를 확인하였다. 획득한 영상의 분석은 전면상과 후면상 각각의 신장과 방광에 관심영역을 그려 분석하였으며, 재현성을 확인하기 위하여 각 5회씩 반복하여 분석하였다. 주입속도 변화에 대해 30 stroke으로 펌프의 압력을 조절하였을 때 방사성의약품이 신장팬텀에 가장 많이 집적되었다가 배출되었고, 40 stroke으로 조절하였을 때 가장 적게 집적되었다가 배출되었다. 10 stroke으로 조절한 경우 좌우신장의 집적량이 최고치에 도달하지 못하였다. 방사성동위원소의 양에 따른 변화에서는 0.6 mCi (22.2 MBq), 0.8 mCi (29.6 MBq) 모두 유사한 성향을 나타냈으나, 0.8 mCi 를 주입한 결과에서는 0.6 mCi의 두배에 가까운 수치(count)를 나타냈다. 좌측신장모형은 20 stroke, 우측신장모형은 30 stroke으로 다른 조건으로 시행한 결과, 최고점에 이른 시간이 각각 다르게 형성되었으며, 이는 결과 영상에서도 육안으로 쉽게 구분할 수 있었다. 본 연구를 통하여 동적 신장팬텀시스템이 실제 임상의 동적 신장검사를 유사하게 재현이 가능한 것을 확인할 수 있었다. 특히 신장을 통해 방광으로 배설되는 흐름에 대해 시간에 따른 묘사가 충분하게 재현되었으며, 동적 영상의 질을 확인하는데 기초 자료로 활용이 가능하리라 사료된다. 또한 추후 기능적 영상 분야에 연구 및 정도관리 분야에도 도움이 되리라 여겨진다.

Currently, commercially available phantom can reproduce and evaluate only a static situation, the study is incomplete research on phantom and system which is can confirmed functional situation in the kidney by time through dynamic phantom and blood flow velocity, various difference according to the amount of radioactive. Therefore, through this study, it has produced the dynamic kidney phantom to reproduce images through the dynamic flow of the kidney, it desires to evaluate the usefulness of nuclear medicine imaging. The production of the kidney phantom was fabricated based on the normal adult kidney, in order to reproduce the dynamic situation based on the fabricated kidney phantom, in this study, it was applied the volume pump that can adjust the speed of blood flow, so it can be integrated continuously radioactive isotopes in the kidney by using $^{99m}Tc$-pertechnate. Used the radioactive isotope was supplied through the two pump. It was confirmed the changes according to the infusion rate, radioactive isotopes and the different injection speeds on the left and right, analysis of the acquired images was done by drawn five times ROI in order to check the reproducibility of each on the front and rear of the kidney and bladder. Depending on the speed of injection, radioisotope was a lot of integrated and emissions up when adjusting the pressure of the pump as 30 stroke, it was the least integrated and emissions up when adjusting as 40 stroke. The integration of the left & right kidney was not reached in the amount of the highest when adjusting as 10 stroke. In the changes according to the amount of the radioactive isotope, 0.6 mCi(22.2 MBq), 0.8 mCi (29.6 MBq)was showed up similar tendency but, in the result of the different injection 0.8 mCi, it was showed up counts close to double of 0.6 mCi. In the result of the differently injection speed of the left & right kidney, as a result of different conditions that injection speed was 20 stroke through left kidney phantom, the injection speed was 30 stroke through right kidney phantom, it was enough difference in the resulting image can be easily distinguished with the naked eye. Through this study, the results showed that the dynamic kidney phantom system is able to similarly reproduce renogram in the actual clinical practice. Especially, the depicted over time for the flow to be excreted through the kidney into the bladder was adequately reproduce, it is expected to be utilized as basic data to check the quality of the dynamic images. In addition, it is considered to help in the field of functional imaging and quality control.

키워드

참고문헌

  1. C. Miyazaki, H. Harada, et al.: $^{99m}Tc$-DTPA dynamic SPECT and CT volumetry for measuring split renal function in live kidney donors, Ann Nucl Med, 24, 189-195, 2010 https://doi.org/10.1007/s12149-010-0349-y
  2. Ying-Chun Ma, Li Zuo, et al.: Comparison of $^{99m}Tc$-DTPA renal dynamic imaging with modified MDRD equation for glomerular filtration rate estimation in Chinese patients in different stages of chronic kidney disease, Nephrol Dial Transplant, 22, 417-423, 2007 https://doi.org/10.1093/ndt/21.suppl_6.vi417
  3. R.D. Folks, E. V .Garcia, A. T. Taylor : Development and Prospective Evaluation of an Automated Software System for Quality Control of Quantitative $^{99m}Tc$-MAG3 Renal Studies, J Nucl Med Technol, 35, 57-33, 2007
  4. J.O. Heikkinen : New Automated Physical Phantom for Renography, J Nucl Med, 45, 495-499, 2004
  5. I. Karagoz, O. Erogul, et al.: A new dynamic renal phantom and its application to scintigraphic studies for pixel basis functional radionuclide imaging, 20, 473-479, 1998
  6. A Celler, T Farncombe, et al.: Performance of the dynamic single photon emission computed tomography (dSPECT) method for decreasing or increasing activity changes, Phys Med Biol, 3525-3543, 2000
  7. A.S. Houston, D.R. Whalley et al.: UKaudit and analysis of quantitative parameters obtained from gamma camera renography, Nuclear Medicine Communications, 22, 559-566, 2001 https://doi.org/10.1097/00006231-200105000-00015
  8. J.O. Heikkiene, J.T. Kuikka, A.K.A. Ahonen, P.J. Rautio : Quality of dynamic radionuclide renal imaging:multicentre evaluation using a functional renal phantom, Nuclear Medicine Communications, 22, 987-995, 2001 https://doi.org/10.1097/00006231-200109000-00008