DOI QR코드

DOI QR Code

Synthesis and Characterization of Zn(1-x)NixAl2O4 Spinels as a New Heterogeneous Catalyst of Biginelli's Reaction

  • Akika, Fatima-Zohra (Departement de Chimie, Faculte des Sciences Exactes et Informatique, Universite de Jijel) ;
  • Kihal, Nadjib (Departement de Chimie, Faculte des Sciences Exactes et Informatique, Universite de Jijel) ;
  • Habila, Tahir (Departement de Chimie, Faculte des Sciences Exactes et Informatique, Universite de Jijel) ;
  • Avramova, Ivalina (Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences) ;
  • Suzer, Sefik (Department of Chemistry, Bilkent University) ;
  • Pirotte, Bernard (Laboratoire de chimie pharmaceutique, CHU Tour 4, B36, Universite de liege) ;
  • Khelili, Smail (Departement de Chimie, Faculte des Sciences Exactes et Informatique, Universite de Jijel)
  • Received : 2012.11.30
  • Accepted : 2013.02.14
  • Published : 2013.05.20

Abstract

$Zn_{(1-x)}Ni_xAl_2O_4$ (x = 0.0-1.0) spinels were prepared at $800^{\circ}C$ by co-precipitation method and characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. The specific surface area was determined by BET. SEM image showed nano sized spherical particles. XPS confirmed the valence states of the metals, showing moderate Lewis character for the surface of materials. The powders were successfully used as new heterogeneous catalysts of Biginelli's reaction, a one-pot three-component reaction, leading to some dihydropyrimidinones (DHPMs). These new catalysts that produced good yields of DHPMs, were easily recovered by simple filtration and subsequently reused with persistent activity, and they are non-toxic and environmentally friendly. The optimum amount of catalyst is 20% by weight of benzaldehyde derivatives, while the doping amount has been found optimal for x = 0.1.

Keywords

References

  1. Bragg, W. H. The Structure of the Spinel Group of Crystals. Phil. Math. 1915, 30, 305.
  2. Hahn, T. International Tables for X-ray Crystallography: Space Group Symmetry; 2006; vol. A. chap. 7.1, p 669.
  3. Nishikawa, S. Proc. Math. Phys. Soc. Tokyo, Japan, 1915, 8, 199.
  4. O'Neill, H. St. C.; Dollase, W. A. Phys. Chem. Minerals 1994, 20, 541. https://doi.org/10.1007/BF00211850
  5. Nathawan, P.; Darshane, V. S. Structural J. Phys. 1988, 2, 3191.
  6. Van der Laag, N. J.; Snel, M. D.; Magusin, P. C. M. M.; De With, G. J. Eur. Cer. Soc. 2004, 24, 2417. https://doi.org/10.1016/j.jeurceramsoc.2003.06.001
  7. Chen, L.; Horiuchi, T.; Mori, T. Appl. Catal. A. Gen. 2001, 209, 97. https://doi.org/10.1016/S0926-860X(00)00743-2
  8. Shangguan, W. F.; Teraoka, Y.; Kagawa, S. Appl. Catal. B: Environ. 1996, 8, 217. https://doi.org/10.1016/0926-3373(95)00070-4
  9. Seiyama, N.; Yamazoe N.; Arai, H. Sensors and Actuators 1983, 4, 85. https://doi.org/10.1016/0250-6874(83)85012-4
  10. Shioyama, T. K.; Alcohol Dehydratation Employing Zinc Aluminate Catalysis, U.S. Patent Number 4, 260, 845, date of patent 1981.
  11. Aguilar-Rios, G.; Valenzuela, M.; Salas, P.; Armendariz, M.; Bosh, P.; Del Toro, G.; Silva, R.; Bertin, V.; Castillo, S.; Ramirez-solis, A.; Schifter, I. Appl. Catal. A. Gen. 1995, 127, 65. https://doi.org/10.1016/0926-860X(95)00269-3
  12. Roesky, R.; Weiguny, J.; Bestgen, H. B.; Dingerdissen, U. Appl. Catal. A: General 1999, 176, 213. https://doi.org/10.1016/S0926-860X(98)00246-4
  13. Muhammad Abdul Jamal, E.; Sakthi Kumar, D.; Antharaman, M. R. Bull. Mater. Sci. 2011, 34, 251. https://doi.org/10.1007/s12034-011-0071-y
  14. Sampath, K.; Cordino, F. J. Amer. Ceram. Soc. 1998, 81, 649.
  15. Hong, W. S.; De Jonghe, L. C. J. Am. Ceram. Soc. 1995, 78, 3217. https://doi.org/10.1111/j.1151-2916.1995.tb07957.x
  16. Phani, A. R.; Passacantando, M.; Santucci, S. Mater. Chem. Phys. 2001, 68, 66. https://doi.org/10.1016/S0254-0584(00)00270-4
  17. Hetting, G. F.; Worl, H.; Weiter, H. H. Z. Anorg. Allg. Chem. 1956, 283, 207. https://doi.org/10.1002/zaac.19562830121
  18. Valenzuela, M. A.; Jacobs, J. P.; Bosch, P.; Reije, S.; Zapata, B.; Brongersman, H. H. Appl. Catal. A: General 1997, 148, 315. https://doi.org/10.1016/S0926-860X(96)00235-9
  19. Chen, Z.; Shi, E.; Zheng, Y.; Li, W.; Wu, N.; Zhong, W. Mater. Lett. 2002, 56, 601. https://doi.org/10.1016/S0167-577X(02)00561-X
  20. Biginelli, P. Ber. Dtsch. Chem. Ges. 1891, 24, 2962. https://doi.org/10.1002/cber.189102402126
  21. Biginelli, P. Gazz. Chim. Ital. 1893, 23, 360.
  22. Hurst, E. W.; Hull, R. J. Med. Chem. 1961, 3, 215. https://doi.org/10.1021/jm50015a002
  23. Mayer, T. U.; Kapoor, T. M.; Haggarty, S. J.; King, R. W.; Schreiber, S. I.; Mitchison, T. J. Science 1999, 286, 971. https://doi.org/10.1126/science.286.5441.971
  24. Kato, T. Jpn. Kokay Tokkyo Koho 1984, 59, 190,974 (CA 102: 132067).
  25. Atwal, K. S.; Swanson, B. N.; Unger, S. E.; Floyd, D. M.; Moreland, S.; Hedberg, A.; O'Reilly, B. C. J. Med. Chem. 1991, 34, 806. https://doi.org/10.1021/jm00106a048
  26. Rovnyak, G. C.; Atwal, K. S.; Hedberg, A.; Kimball, S. D.; Moreland, S.; Gougoutas, J. Z.; O'Reilley, B. C.; Schwartz, J.; Malley, M. F. J. Med. Chem. 1992, 35, 3254. https://doi.org/10.1021/jm00095a023
  27. Kape, C. O. Molecules 1998, 3(1), 1. https://doi.org/10.3390/30100001
  28. Jauk, B.; Pernat, T.; Kappe, C. O. Molecules 2000, 5, 227. https://doi.org/10.3390/50300227
  29. Ranu, B. C.; Hajra, A.; Jana, U. J. Org. Chem. 2000, 65, 6270. https://doi.org/10.1021/jo000711f
  30. Dondoni, A.; Massi, A. Tetrahedron Lett. 2001, 42, 7975. https://doi.org/10.1016/S0040-4039(01)01728-2
  31. Choudhary, V. R.; Tillu, V. H.; Narkhede, V. S.; Borate, H. B.; Wakhakar, R. D. Catal. Commun. 2003, 4, 449. https://doi.org/10.1016/S1566-7367(03)00111-0
  32. Stadler, A.; Kappe, C. O. J. Comb. Chem. 2001, 3, 624. https://doi.org/10.1021/cc010044j
  33. Stadler, A.; Yousefi, B. H.; Dallinger, D.; Walla, P.; Van der Eycken, E.; Kaval, N.; Kappe, C. O. Org. Process Res. Dev. 2003, 7, 707. https://doi.org/10.1021/op034075+
  34. Lu, L.; Ma, M. Synlett. 2000, 1, 63.
  35. Lu, L.; Bai, Y. Synthesis 2002, 4, 466.
  36. Ranu, B. C.; Hajra, A.; Jana, U. J. Org. Chem. 2000, 65, 6270. https://doi.org/10.1021/jo000711f
  37. Fu, N.-Y.; Yuan, Y.-F.; Cao, Z.; Wang, S. W.; Wang, J.-T.; Peppe, C. Tetrahedron 2002, 58, 4801. 30.
  38. Fu, N.-Y.; Yuan, Y.-F.; Pang, M.-L.; Wang, J.-T.; Peppe, C. J. Oragnomet. Chem. 2003, 672, 52. https://doi.org/10.1016/S0022-328X(03)00139-6
  39. Reddy, C. V.; Mahesh, M.; Raju, P. V. K.; Babu, T. R.; Reddy, V. V. N. Tetrahedron Lett. 2002, 43, 2657. https://doi.org/10.1016/S0040-4039(02)00280-0
  40. Lu, J.; Bay, Y.; Wang, Z.; Yang, B.; Ma, H. Tetrahedron Lett. 2000, 41, 9075. https://doi.org/10.1016/S0040-4039(00)01645-2
  41. Bose, D. S.; Fatima, L.; Mereyala, H. B. J. Org. Chem. 2003, 68, 587-590. https://doi.org/10.1021/jo0205199
  42. Quan, Z.-J.; Da, Y.-X.; Zhang, Z.; Wang, X.-C. Catalysis Communication 2009, 10, 1146. https://doi.org/10.1016/j.catcom.2008.12.017
  43. Gupta, R.; Paul, S.; Gupta, R. Journal of Molecular Catalysis A: Chemica. 2007, 266, 50. https://doi.org/10.1016/j.molcata.2006.10.039
  44. Sharghi, H.; Jokar, M. Synthetic Communications 2009, 39, 958. https://doi.org/10.1080/00397910802444258
  45. Xu, H.; Wang, Y-G. Chinese J. Chem. 2003, 21, 327.
  46. Varala, R.; Alam, M. M.; Adapa, S. R. Synlett. 2003, 67.
  47. Ma, Y.; Qian, C.; Wang, L.; Yuang, M. J. Org. Chem. 2000, 65, 3864. https://doi.org/10.1021/jo9919052
  48. Jain, S. L.; Prasad, V. V. D. N.; Sain, B. Catalysis Communications 2008, 9, 499. https://doi.org/10.1016/j.catcom.2007.04.021
  49. Kantam, M. L.; Ramani, T.; Chakrapani, L.; Choudary, B. M. 2009, 10, 370.
  50. Barr, T. L.; Seal, S.; Bozniak, K.; Klinowski, J. J. Chem. Soc. Faraday Trans. 1997, 93(1), 181-186. https://doi.org/10.1039/a604061f
  51. Shirley, D. A. Physical Review B 1972, 5, 4709. https://doi.org/10.1103/PhysRevB.5.4709
  52. Wagner, C. D., Ed.; Empirically derived atomic sensitivity factor for XPS In: Practical Surface Analysis 1: Auger and X-Ray Spectroscopy; Brings and M. P. Seach, Willey: Chichester 1990; p 635. Appendix 6.
  53. Altermatt, U. D.; Brown, I. D. Acta Cryst. 1987, A43, 125.
  54. Zawadzki, M. Sol. State Sci. 2006, 8, 14. https://doi.org/10.1016/j.solidstatesciences.2005.08.006
  55. JCPDS PDF No 05-0669.
  56. Shanon, R. D. Acta Cryst. A32 1976, 751.
  57. Cullity, B. D. Elements of X-Ray Diffraction; Addison-Wesley: London, U.K., 1978; p 101.
  58. Sigel, G. A.; Bartlett, R. A.; Decker, D.; Olmstead, M. M.; Power, P. P. Inorg. Chem. 1987, 26, 1773. https://doi.org/10.1021/ic00258a028
  59. Adams, R. W.; Martin, R. L.; Winter, G. Aust. J. Chem. 1970, 20, 773.
  60. Barraclough, C. G.; Bradley, D. C.; Lewis, J.; Thomas, I. M. J. Chem. Soc. 1961, 2601. https://doi.org/10.1039/jr9610002601
  61. Ettre, L. S. Pigment Surface, In: Lewis, P. A., Ed.; Pigment Handbook; Wiley-Interscience Publication: Ohio, U.S.A., 1987; p 139.
  62. Barr, T. L. J. Vac. Sci. Technol. A 1989, 7, 1677. https://doi.org/10.1116/1.576069
  63. Fritsh, A.; Legare, P. Surf. Sci. 1987, 186, 247. https://doi.org/10.1016/S0039-6028(87)80046-8
  64. Cocke, D. L.; Johnson, E. D.; Merrill, R. P. Catal. Rev. Sci. Eng. 1984, 26, 163. https://doi.org/10.1080/01614948408078064
  65. Benoit, R. lasurface, www.Lasurface.com/XPS and AES database.
  66. Van den Brand, J.; Snijders, P. C.; Sloof, W. G.; Terryn, H.; de Wit, J. H. W. J. Phys. Chem. B 2004, 108, 6017.
  67. Velu, S.; Suzuki, K.; Vijayaraj, M.; Barmann, S.; Gopinath, C. S. Appl. Catal. 2005, B55, 287.
  68. Rousseau, S.; Loridant, S.; Delichere, P.; Boreave, A.; Deloume, J. P.; Vernaux, P. Applied Catalysis B: Environmenta 2009, 88, 438. https://doi.org/10.1016/j.apcatb.2008.10.022
  69. Vincent Crist, B.; XPS international, LLC; PDF Handbooks of Monochromatic XPS Spectra 2005.
  70. Barr, T. L.; Seal, S.; He, H.; Klinowski, J. Vacuum 1995, 46, 1391. https://doi.org/10.1016/0042-207X(95)00159-X
  71. Arean, C. O.; Mentrait, M. P.; Lopez, A. J. L.; Parra, J. B. Colloids Surf. A: Physicochem. Engg. Aspects 2001, 180, 253. https://doi.org/10.1016/S0927-7757(00)00590-2
  72. Salitha, G.; Reddy, G. S. K.; Yadav, J. S. Tetrahedron Lett. 2003, 44, 6497. https://doi.org/10.1016/S0040-4039(03)01564-8
  73. Amini, M. M.; Shaabani, A.; Bazgir, A. Catal. Commun. 2006, 7, 843. https://doi.org/10.1016/j.catcom.2006.02.027
  74. Mitra, A. K.; Banerjee, K. Synlett. 2003, 10, 1509.
  75. Hevari, M. M.; Bakhtiara, K.; Bamoharam, F. Z. Catal. Commun. 2006, 7, 373. https://doi.org/10.1016/j.catcom.2005.12.007
  76. Russowsky, D.; Lopes, F. A.; Silva, V. S. S.; Canto, K. F. S.; Montes D'Oca, M. G.; Godoi, M. N. J. Braz. Chem. Soc. 2004, 15, 165. https://doi.org/10.1590/S0103-50532004000200002

Cited by

  1. Decoration of multi-walled carbon nanotubes with NiO nanoparticles and investigation on their catalytic activity to synthesize pyrimidinone heterocycles vol.12, pp.1, 2015, https://doi.org/10.1007/s13738-014-0468-9
  2. Solvent-free efficient one-pot synthesis of Biginelli and Hantzsch compounds catalyzed by potassium phthalimide as a green and reusable organocatalyst vol.41, pp.8, 2015, https://doi.org/10.1007/s11164-014-1621-x
  3. 1,3,5-Tris(2-hydroxyethyl)isocyanurate functionalized graphene oxide: a novel and efficient nanocatalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones vol.41, pp.14, 2017, https://doi.org/10.1039/C7NJ00632B
  4. )-ones bearing urea, thiourea, and sulfonylurea moieties pp.1480-3291, 2018, https://doi.org/10.1139/cjc-2018-0239