DOI QR코드

DOI QR Code

Aminolysis of Benzyl 2-Pyridyl Thionocarbonate and t-Butyl 2-Pyridyl Thionocarbonate: Effects of Nonleaving Groups on Reactivity and Reaction Mechanism

  • Kim, Min-Young (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Lee, Jae-In (Department of Chemistry and Plant Resources Research Institute, Duksung Women's University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2013.01.14
  • Accepted : 2013.01.15
  • Published : 2013.04.20

Abstract

A kinetic study is reported for nucleophilic substitution reactions of benzyl 2-pyridyl thionocarbonate (5b) and t-butyl 2-pyridyl thionocarbonate (6b) with a series of alicyclic secondary amines in $H_2O$ at $25.0^{\circ}C$. General-base catalysis, which has often been reported to occur for aminolysis of esters possessing a C=S electrophilic center, is absent for the reactions of 5b and 6b. The Br${\o}$nsted-type plots for the reactions of 5b and 6b are linear with ${\beta}_{nuc}$ = 0.29 and 0.43, respectively, indicating that the reactions of 5b proceed through a stepwise mechanism with formation of a zwitterionic tetrahedral intermediate ($T^{\pm}$) being the rate-determining step while those of 6b proceed through a concerted mechanism. The reactivity of 5b and 6b is similar to that of their oxygen analogues (i.e., benzyl 2-pyridyl carbonate 5a and t-butyl 2-pyridyl carbonate 6a, respectively), indicating that the effect of modification of the electrophilic center from C=O to C=S (i.e., from 5a to 5b and from 6a to 6b) on reactivity is insignificant. In contrast, 6b is much less reactive than 5b, indicating that the replacement of the $PhCH_2$ in 5b by the t-Bu in 6b results in a significant decrease in reactivity as well as a change in the reaction mechanism (i.e., from a stepwise mechanism to a concerted pathway). It has been concluded that the contrasting reactivity and reaction mechanism for the reactions of 5b and 6b are not due to the electronic effects of $PhCH_2$ and t-Bu but are caused by the large steric hindrance exerted by the bulky t-Bu in 6b.

Keywords

References

  1. Castro, E. A. Pure Appl. Chem. 2009, 81, 685-696. https://doi.org/10.1351/PAC-CON-08-08-11
  2. Castro, E. A. Chem. Rev. 1999, 99, 3505-3524. https://doi.org/10.1021/cr990001d
  3. Jencks, W. P. Chem.Rev. 1985, 85, 511-527. https://doi.org/10.1021/cr00070a001
  4. Jencks, W. P. Chem. Soc. Rev. 1981,10, 345-375. https://doi.org/10.1039/cs9811000345
  5. Jencks, W. P. Acc. Chem. Res. 1980, 13, 161-169. https://doi.org/10.1021/ar50150a001
  6. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Phys. Org. Chem.2011, 24, 466-473. https://doi.org/10.1002/poc.1787
  7. Castro, E. A.; Aliaga, M. E.; Cepeda, M.; Santos, J. G. Int. J. Chem. Kinet. 2011, 43, 353-358. https://doi.org/10.1002/kin.20562
  8. Castro, E. A.; Aliaga, M.; Campodonico, P. R.; Cepeda, M.; Contreras. R.; Santos, J. G. J. Org. Chem. 2009, 74, 9173-9179. https://doi.org/10.1021/jo902005y
  9. Castro, E. A.; Ramos, M.; Santos, J. G. J. Org. Chem. 2009, 74, 6374-6377. https://doi.org/10.1021/jo901137f
  10. Castro, E. A.; Aliaga, M.; Santos, J. G. J. Org. Chem. 2005, 70,2679-2685. https://doi.org/10.1021/jo047742l
  11. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org.Chem. 2005, 70, 8088-8092. https://doi.org/10.1021/jo051168b
  12. Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1972, 94, 3824-3829. https://doi.org/10.1021/ja00766a027
  13. Maude, A. B.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1997, 179-183.
  14. Maude, A. B.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1995, 691-696.
  15. Menger, F. M.; Brian, J.; Azov, V. A. Angew. Chem. Int. Ed. 2002, 41, 2581-2584. https://doi.org/10.1002/1521-3773(20020715)41:14<2581::AID-ANIE2581>3.0.CO;2-#
  16. Perreux, L.; Loupy, A.; Delmotte, M. Tetrahedron 2003, 59, 2185-2189. https://doi.org/10.1016/S0040-4020(03)00151-0
  17. Fife, T. H.; Chauffe, L. J. Org. Chem. 2000, 65, 3579-3586. https://doi.org/10.1021/jo9906835
  18. Spillane, W. J.; Brack, C. J. Chem. Soc., Perkin Trans. 2 1998, 2381-2384.
  19. Llinas, A.; Page, M. I. Org. Biomol. Chem. 2004, 2, 651-654. https://doi.org/10.1039/b313900j
  20. Sung, D. D.; Jang, H. M.; Jung, D. I.; Lee, I. J. Phys. Org. Chem. 2008, 21, 1014-1019. https://doi.org/10.1002/poc.1418
  21. Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006, 432, 426-430. https://doi.org/10.1016/j.cplett.2006.11.002
  22. Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006, 426, 280-284. https://doi.org/10.1016/j.cplett.2006.06.015
  23. Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624-5629. https://doi.org/10.1021/jo050606b
  24. Oh, H. K.; Jin, Y. C.; Sung, D. D.; Lee, I. Org. Biomol. Chem. 2005, 3, 1240-1244. https://doi.org/10.1039/b500251f
  25. Oh, H. K. Bull. Korean Chem. Soc. 2011, 32, 4095-4098. https://doi.org/10.5012/bkcs.2011.32.11.4095
  26. Oh, H. K. Bull. Korean Chem. Soc. 2011, 32, 1539-1542. https://doi.org/10.5012/bkcs.2011.32.5.1539
  27. Oh, H. K. Bull. Korean Chem. Soc. 2011, 32, 137-140. https://doi.org/10.5012/bkcs.2011.32.1.137
  28. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 8995-8998. https://doi.org/10.1021/jo0264269
  29. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 3874-3877. https://doi.org/10.1021/jo025637a
  30. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720. https://doi.org/10.1021/jo061308x
  31. Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823-3829. https://doi.org/10.1021/jo070171n
  32. Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org. Chem. 2009, 74, 3073-3078. https://doi.org/10.1021/jo900219t
  33. Um, I. H.; Hong, J. Y.; Kim, J. J.; Chae, O. M.; Bae, S. K. J. Org. Chem. 2003, 68, 5180-5185. https://doi.org/10.1021/jo034190i
  34. Um, I. H.; Chun, S. M.;Chae, O. M.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3166-3172. https://doi.org/10.1021/jo049812u
  35. Um, I. H.; Hong, J. Y.; Seok, J. A. J. Org. Chem. 2005, 70, 1438-1444. https://doi.org/10.1021/jo048227q
  36. Um, I. H.; Min, J. S.; Ahn, J. A.; Hahn, H. J. J. Org. Chem. 2000, 65, 5659-5663. https://doi.org/10.1021/jo000482x
  37. Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942. https://doi.org/10.1021/jo049694a
  38. Um, I. H.; Lee, J. Y.; Lee, H. W.; Nagano, Y.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2005, 70, 4980-4987. https://doi.org/10.1021/jo050172k
  39. Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237-1243. https://doi.org/10.1002/chem.200500647
  40. Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803. https://doi.org/10.1021/jo0606958
  41. Um, I. H.; Park, Y. M.; Fujio, M.; Mishima, M.; Tsuno, Y. J. Org. Chem. 2007, 72, 4816-4821. https://doi.org/10.1021/jo0705061
  42. Um, I. H.; Bae, A. R. J. Org. Chem. 2011, 76, 7510-7515. https://doi.org/10.1021/jo201387h
  43. Um, I. H.; Bae, A. R. J. Org. Chem. 2012, 77, 5781-5787. https://doi.org/10.1021/jo300961y
  44. Um, I. H.; Lee, S. E.; Kwon, H. J. J. Org. Chem. 2002, 67, 8999-9005. https://doi.org/10.1021/jo0259360
  45. Um, I. H.; Seok, J. A.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2003, 68, 7742-7746. https://doi.org/10.1021/jo034637n
  46. Um, I. H.; Hwang, S. J.; Yoon, S. R.; Jeon, S. E.; Bae, S. K. J. Org. Chem. 2008, 73, 7671-7677. https://doi.org/10.1021/jo801539w
  47. Um, I. H.; Kim, E. Y.; Park, H. R.; Jeon, S. E. J. Org. Chem. 2006, 71, 2302-2306. https://doi.org/10.1021/jo052417z
  48. Um, I. H.; Yoon, S. R.; Park, H. R.; Han, H. J. Org. Biomol. Chem. 2008, 6, 1618-1624. https://doi.org/10.1039/b801422a
  49. Kang, J. S.; Um, I. H. Bull. Korean Chem. Soc. 2012, 33, 2269-2273. https://doi.org/10.5012/bkcs.2012.33.7.2269
  50. Bae, A. R.; Um, I. H. Bull. Korean Chem. Soc. 2012, 33, 2719-2723. https://doi.org/10.5012/bkcs.2012.33.8.2719
  51. Kang, J. S.; Lee, J. I.; Um, I. H. Bull. Korean Chem. Soc. 2012, 33, 2971-2975. https://doi.org/10.5012/bkcs.2012.33.9.2971
  52. Kang, J. S.; Lee, J. I.; Um, I. H. Bull. Korean Chem. Soc. 2012, 33, 1551-1555. https://doi.org/10.5012/bkcs.2012.33.5.1551
  53. Bell, R. P. The Proton in Chemistry; Methuen: London, 1959; p 159.
  54. Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 1994, 59, 3572-3574. https://doi.org/10.1021/jo00092a014
  55. Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 1996, 61, 3501-3505. https://doi.org/10.1021/jo951726u
  56. Castro, E. A.; Angel, M.; Arellano, D.; Santos, J. G. J. Org. Chem. 2001, 66, 6571-6575. https://doi.org/10.1021/jo0101252
  57. Jencks, W. P.; Regenstein, F. In Handbook of Biochemistry, Selected Data for Molecular Biology; Sober, H. A., Ed.; The Chemical Rubber Co.: Cleveland, OH, 1968; p J-216.
  58. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper/Collins: New York, 1987; pp 153-157.
  59. Issacs, N. S. Physical Organic Chemistry, 2nd ed.; Longman Scientific and Technical: Singapore, 1995; pp 152-153.
  60. Kim, S.; Yi, K. Y. Tetrahedron Lett. 1985, 26, 1661-1664. https://doi.org/10.1016/S0040-4039(00)98578-2

Cited by

  1. A Kinetic Study on Aminolysis of Benzyl 2-Pyridyl Thionocarbonate and t-Butyl 2-Pyridyl Thionocarbonate: Effects of Polarizability and Steric Hindrance on Reactivity and Reaction Mechanism vol.34, pp.8, 2013, https://doi.org/10.5012/bkcs.2013.34.8.2325
  2. Structure-Reactivity Correlations in Nucleophilic Displacement Reactions of Y-Substituted-Phenyl X-Substituted-Cinnamates with Z-Substituted-Phenoxides vol.34, pp.8, 2013, https://doi.org/10.5012/bkcs.2013.34.8.2455