DOI QR코드

DOI QR Code

UV-curing Behaviors and Mechanical Properties of UV-cured Polylactic Acid (PLA)

  • Lee, Seung-Woo (Laboratory of Adhesion & Bio-Composites, Program in Environmental Materials Science, Research Institute for Agriculture & Life Science, Seoul National University) ;
  • Park, Ji-Won (Laboratory of Adhesion & Bio-Composites, Program in Environmental Materials Science, Research Institute for Agriculture & Life Science, Seoul National University) ;
  • Park, Cho-Hee (Laboratory of Adhesion & Bio-Composites, Program in Environmental Materials Science, Research Institute for Agriculture & Life Science, Seoul National University) ;
  • Kim, Hyun-Joong (Laboratory of Adhesion & Bio-Composites, Program in Environmental Materials Science, Research Institute for Agriculture & Life Science, Seoul National University) ;
  • Eom, Young-Geun (Department of Forest Products & Biotechnology, College of Forest Science, Kookmin University)
  • Received : 2012.10.22
  • Accepted : 2013.03.22
  • Published : 2013.03.25

Abstract

UV curing was introduced via a chemical treatment by adding small amounts of a hexafunctional acrylic monomer and a photoinitiator to improve the mechanical properties of PLA. This study also employed a semi-interpenetrated structured polymer network through the process of UV-curing. The UV curing behaviors were investigated using FTIR-ATR spectroscopy and gel fraction determination. Also, the tensile strength was investigated with different hexafunctional acrylic monomer contents and UV doses. The results showed that the crosslinking of UV-induced chemically treated PLA started at a low content of hexafunctional acrylic monomer, resulting in a significant improvement of the mechanical properties compared to those of neat PLA due to crosslinking.

Keywords

References

  1. Eling, B., S. Gogolewski, and A. Pennings. 1982. Biodegradable materials of poly(l-lactic acid): 1. Melt-spun and solution-spun fibres. Polymer. 23(11): 1587-1593. https://doi.org/10.1016/0032-3861(82)90176-8
  2. Pluta, M. 2004. Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization. Polymer. 45(24): 8239-8251. https://doi.org/10.1016/j.polymer.2004.09.057
  3. Rasal, R. M., A. V. Janorkar, and D. E. Hirt. 2010. Poly(lactic acid) modifications. Prog. Polym. Sci. 35(3): 338-356. https://doi.org/10.1016/j.progpolymsci.2009.12.003
  4. Li, T. N., L. S. Turng, S. Q. Gong, and K. Erlacher. 2006. Polylactide, nanoclay, and core-shell rubber composites. Polym. Eng. Sci. 46(10): 1419-1427. https://doi.org/10.1002/pen.20629
  5. Anderson, K. S., S. H. Lim, and M. A. Hillmyer. 2003. Toughening of polylactide by melt blending with linear low-density polyethylene. J. Appl. Polym. Sci. 89(14): 3757-3768. https://doi.org/10.1002/app.12462
  6. Dorgan, J. R., H. Lehermeir, and M. Mang. 2000. Thermal and Rheological Properties of Commercial-Grade Poly(Lactic Acid)s. J. Polym. Environ. 8(1): 1-9. https://doi.org/10.1023/A:1010185910301
  7. Xu, H., C. Q. Teng, and M. H. Yu. 2006. Improvements of thermal property and crystallization behavior of PLLA-based multiblock copolymer by forming stereocomplex with PDLA oligomer. Polymer. 47(11): 3922-3928. https://doi.org/10.1016/j.polymer.2006.03.090
  8. Shibata, M., N. Teramoto, and Y. Inonue. 2007. Mechanical properties, morphologies, and crystallization behavior of plasticized poly(l-lactide)/poly(butylene succinate-co-llactate) blends. Polymer. 48(9): 2768-2777. https://doi.org/10.1016/j.polymer.2007.02.065
  9. Nugroho, P., H. Mitomo, F. Yoshii, and T. Kume. 2001. Degradation of poly(l-lactic acid) by r-irradiation. Polym. Degrad. Stab. 72(2): 337-343. https://doi.org/10.1016/S0141-3910(01)00030-1
  10. Urayama, H., T. Kanamori, K. Fukushima, and Y. Kimura. 2003. Controlled crystal nucleation in the melt-crystallization of poly(l-lactide) and poly(l-lactide)/poly(d-lactide) stereocomplex. Polymer. 44(19): 5635-5641. https://doi.org/10.1016/S0032-3861(03)00583-4
  11. Tsuji, H. and Y. Ikada. 1995. Properties and morphologies of poly(l-lactide): 1. Annealing condition effects on properties and morphologies of poly(l-lactide). Polymer. 36(14): 2709-2716. https://doi.org/10.1016/0032-3861(95)93647-5
  12. Ogata, N., G., Jimenez, H., Kawai, and T. Ogihara. 1997. Structure and thermal/ mechanical properties of poly(l-lactide)-clay blend. J. Polym. Sci., Part B: Polym. Phys. 35(2): 389-396. https://doi.org/10.1002/(SICI)1099-0488(19970130)35:2<389::AID-POLB14>3.0.CO;2-E
  13. Urayama, H., C. H. Ma, and Y. Kimura. 2003. Mechanical and Thermal Properties of Poly(L-lactide) Incorporating Various Inorganic Fillers with Particle and Whisker Shapes. Macromol. Mater. Eng. 288(7): 562-568. https://doi.org/10.1002/mame.200350004
  14. Trimaille, T., C. Pichot, A. Elaissari, H. Fessi, S. Briancon, and T. Delair. 2003. Poly(d,l-lactic acid) nanoparticle preparation and colloidal characterization. Colloid Polym. Sci. 281(12): 1184-1190. https://doi.org/10.1007/s00396-003-0894-1
  15. Hu, X., H. S. Xu, and Z. M. Li. 2007. Morphology and Properties of Poly(L-Lactide) (PLLA) Filled with Hollow Glass Beads. Macromol. Mater. Eng. 292(5): 646-654. https://doi.org/10.1002/mame.200600504
  16. Wan, Y. Z., Y. L. Wang, X. H. Xu, and Q. Y. Li. 2001. In vitro degradation behavior of carbon fiber-reinforced PLA composites and influence of interfacial adhesion strength. J. Appl. Polym. Sci. 82(1): 150-158. https://doi.org/10.1002/app.1834
  17. Li, B. H. and M. C. Yang. 2006. Improvement of thermal and mechanical properties of poly(L-lactic acid) with 4,4-methylene diphenyl diisocyanate. Polym. Adv. Technol. 17(6): 439-443. https://doi.org/10.1002/pat.731
  18. Di, Y. W., S. Iannace, E. Di Maio, and L. Nicolais. 2005. Reactively modified poly(lactic acid): properties and foam processing. Macromol. Mater. Eng. 290(11): 1083-1090. https://doi.org/10.1002/mame.200500115
  19. Yang, S.-L., Z.-H. Wu, W. Yang, and M.-B. Yang. 2008. Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polymer Testing 27(8): 957-963. https://doi.org/10.1016/j.polymertesting.2008.08.009
  20. Park, Y.-J., D.-H. Lim, H.-J. Kim, D.-S. Park, and I.-K. Sung. 2009. UV- and thermal- curing behaviors of dual-curable adhesives based on epoxy acrylate oligomers. Int. J. Adhes. Adhes. 29(7): 710-717. https://doi.org/10.1016/j.ijadhadh.2009.02.001
  21. Dufour, P., J. P. Fouassier, J. F. Rabek, and editors. 1993. Radiation curing in polymer science and technology. Vol.1. London: Elsevier Science Publisher.
  22. Xiao, P., Y. Wang, M. Dai, G. Wu, S. Shi, and J. Nie. 2007. Synthesis and photopolymerization kinetics of benzophenone piperazine one-component initiator. J. Polym. Adv. Technol. 19(5): 409-413.
  23. Bayramoglu, G., M. V. Kahraman, N. Kayaman-Apohan, and A. Gungor. 2006. Synthesis and characterization of UV-curable dual hybrid oligomers based on epoxy acrylate containing pendant alkoxysilane groups. Prog. Org. Coat. 57(1): 50-55. https://doi.org/10.1016/j.porgcoat.2006.06.002
  24. Kayaman, N. A., R. Demirci, M. Cakir, and A. Gungor. 2005. UV-curable interpenetrating polymer networks based on acrylate/vinyl ether functionalized urethane oligomers. Radiat. Phys. Chem. 73(5): 254-262. https://doi.org/10.1016/j.radphyschem.2004.09.026
  25. Joo, H.-S., Y.-J. Park, H.-S. Do, H.-J. Kim, S.-Y. Song, and K.-Y. Choi. 2007. The curing performance of UV-curable semi-interpenetrating polymer network structured acrylic Pressure-sensitive adhesives. J. Adhesion Sci. Technol. 21(7): 575-588. https://doi.org/10.1163/156856107781192346
  26. Auchter, G., O. Aydin, A. Zettl, and D. Satas. 1999. Handbook of pressure sensitive adhesive technology, D. Satas (Ed.), Satas Associates, Warwick, RI. 444-514.
  27. Chattopadhyay, D. K., S. S. Panda, and K. V. S. N. Raju. 2005. Thermal and mechanical properties of epoxy acrylate/methacrylates UV cured coatings. Prog. Org. Coat. 54(1): 10-19. https://doi.org/10.1016/j.porgcoat.2004.12.007
  28. Do, H.-S., Y.-J. Park, and H.-J. Kim. 2006. Preparation and adhesion performance of UV-crosslinkable acrylic pressure sensitive adhesives. J. Adhesion Sci. Technol. 20(13): 1529-1545. https://doi.org/10.1163/156856106778666462
  29. Kajtna, J., B. Likozar, J. Golob, and M. Krajnc. 2008. The influence of the polymerization on properties of an ethylacrylate / 2-ehtyl hexylacrylate pressure-sensitive adhesive suspension. Int. J. Adhes. Adhes. 28(7): 382-390. https://doi.org/10.1016/j.ijadhadh.2007.11.003
  30. Kajtna, J., J. Golob, and M. Krajnc. 2008. The effect of polymer molecular weight and crosslinking reactions on the adhesion properties of microsphere water-based acrylic pressure-sensitive adhesives. Int. J. Adhes. Adhes. 29(2): 186-194.
  31. Kajtna, J. and U. Sebenik. 2009. Microsphere pressure sensitive adhesive acrylic polymer/ montmorillonite clay nanocomposite materials. Int. J. Adhes. Adhes. 29(5): 543-550. https://doi.org/10.1016/j.ijadhadh.2009.01.001

Cited by

  1. Polylactic acid/polyurethane blend reinforced with cellulose nanocrystals with semi-interpenetrating polymer network (S-IPN) structure vol.86, 2017, https://doi.org/10.1016/j.eurpolymj.2016.11.031