DOI QR코드

DOI QR Code

Can animals too negotiate nano transformations?

  • Jha, Anal K. (Aryabhatta Centre for Nanoscience and Nanotechnology, Aryabhatta Knowledge University) ;
  • Prasad, K. (University Department of Physics, T.M. Bhagalpur University)
  • Received : 2012.06.12
  • Accepted : 2013.03.04
  • Published : 2013.03.25

Abstract

Cockroach (Periplaneta americana) broth has been employed to assess its potential as a candidate source animal tissue for the synthesis of gold nanoparticles. The synthesis is performed akin to room temperature in the laboratory ambience. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of nanoparticles. The synthesis of nanoparticles might have resulted due to the activity of chitin, metallothioneine and tropomyosin. A possible involved mechanism for the biosynthesis of nanoparticles has also been proposed. This work further indicates that the animal wastes too can effectively participate in nano-transformations thereby helping in controlling the environmental pollution and subsequently the different diseases.

Keywords

References

  1. Agarwal, P., Mehta, A., Kachhwaha, S. and Kothari, S.L. (2013), "Synthesis of silver nanoparticles and their activity against Mycobacterium tuberculosis", Adv. Sci. Eng. Medicine, 5, 1-6. https://doi.org/10.1166/asem.2013.1211
  2. Ankamwar, B., Damle, C., Ahmad, A. and Sastry, M. (2005), "Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and trans-metallation in an organic solution", J. Nanosci. Nanotechnol., 10, 1665-1671.
  3. Arangasamy, L. and Munusamy, V. (2008), "Tapping the unexploited plant resources for the synthesis of silver nanoparticles", Afr. J. Biotechnol., 7, 3162-3165.
  4. Armendariz, V., Herrera, I., Peralta-Videa, J.R., Jose-Yacaman, M., Toroiani, H., Santiago, P. and Gardea-Torresdey, J.L. (2004), "Size controlled gold nanoparticles formation by Avena sativa biomass: use of plants in nanobiotechnology", J. Nanopart. Res., 6, 377-382. https://doi.org/10.1007/s11051-004-0741-4
  5. Arruda, L.K., Vailes, L.D., Mann, B.J., Shannon, J., Fox, J.W., Vedvick, T.S., Haden, M.L. and Chapman, M.D. (1995), "Molecular cloning of a major cockroach (Blattella germanica) allergen, Bla g 2. sequence homology to the aspartic proteases", J. Biol. Chem., 270, 19563-19568. https://doi.org/10.1074/jbc.270.33.19563
  6. Asturias, J.A., Gomez-Bayon, N., Arilla, M.C., Martinez, A., Palacios, R., Sanchez-Gascon, F. and Martinez, J. (1999), "Molecular Characterization of American Cockroach Tropomyosin (Periplaneta americana Allergen 7), a Cross-Reactive Allergen", J. Immunol., 162, 4342-4348.
  7. Ballan-Dufrancais, C. (2002), "Localization of metals in cells of pterygote insects", Microsc. Res. Tech., 56, 403-420. https://doi.org/10.1002/jemt.10041
  8. Bansal, V., Rautaray, D., Barred, A., Ahire, K., Sanyal, A. and Ahmad, A. (2005), "Fungus-mediated biosynthesis of silica and titania particles", J. Mater. Chem., 15, 2583-2589. https://doi.org/10.1039/b503008k
  9. Chandran, S.P., Choudhary, M., Pasricha, R., Ahmad, A. and Sastry, M. (2006), "Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract", Biotechnol. Prog., 22, 577-583. https://doi.org/10.1021/bp0501423
  10. Cruz, D., Fale, P.L., Mourato, A., Vaz, P.D., Serralheiro, M.L. and Lino, A.R.L. (2010), "Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena)", Colloids Surf. B: Biointerfaces, 81, 67-73. https://doi.org/10.1016/j.colsurfb.2010.06.025
  11. Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., Wang, Y., Shao, W, He, N., Hong, J. and Chen, C. (2007), "Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf", Nanotechnol., 18, 105104-105115. https://doi.org/10.1088/0957-4484/18/10/105104
  12. Jha, A.K. and Prasad, K. (2012a), "Banana fly (Drosophila Sp.) synthesizes CdS nanoparticles!", J. Bionanosci., 6, 99-103. https://doi.org/10.1166/jbns.2012.1076
  13. Jha, A.K. and Prasad, K. (2012b), "PbS nanoparticles: biosynthesis and characterization", Int. J. Nanopart., 5, 369-379. https://doi.org/10.1504/IJNP.2012.049914
  14. Jha, A.K. and Prasad, K. (2012c), "Biosynthesis of gold nanoparticles using common aromatic plants", Int. J. Green Nanotech.: Phys. Chem., 4, 219-224. https://doi.org/10.1080/19430892.2012.706070
  15. Jha, A.K. and Prasad, K. (2011a), "Biosynthesis of gold nanoparticles using bael (Aegle marmelos) leaf: Mythology met technology", Int. J. Green Nanotech.: Phys. Chem., 3, 92-97. https://doi.org/10.1080/19430892.2011.574560
  16. Jha, A.K. and Prasad, K. (2011b), "Green fruit of chili (Capsicum annum L.) synthesizes nano silver!", Digest J. Nanomater. Biostruct., 6, 1717-1723.
  17. Jha, A.K. and Prasad, K. (2010a), "Ferroelectric $BaTiO_3$ nanoparticles: biosynthesis and characterization", Colloids Surf B: Biointerfaces, 75, 330-334. https://doi.org/10.1016/j.colsurfb.2009.09.005
  18. Jha, A.K. and Prasad, K. (2010b), "Green synthesis of silver nanoparticles using Cycas leaf", Int. J. Green Nanotech.: Phys. Chem., 1, 110-117. https://doi.org/10.1080/19430871003684572
  19. Jha, A.K., Kumar, V. and Prasad, K. (2011), "Biosynthesis of metal and oxide nanoparticles using orange juice", J. Bionanosci., 5, 162-165. https://doi.org/10.1166/jbns.2011.1053
  20. Jha, A.K., Prasad, K., Prasad, K. and Kulkarni, A.R. (2010), "Probiotic Lactobacillus adds $WO_3$ in its nanomenu!", J. Bionanosci., 4, 99-103. https://doi.org/10.1166/jbns.2010.1023
  21. Jha, A.K., Prasad, K. and Kulkarni, A.R. (2009a), "Synthesis of $TiO_2$ nanoparticles using microorganisms", Colloids Surf B: Biointerface, 71, 226-229. https://doi.org/10.1016/j.colsurfb.2009.02.007
  22. Jha, A.K., Prasad, K. and Prasad, K. (2009b), "A green low-cost biosynthesis of $Sb_2O_3$ nanoparticles", Biochem. Eng. J., 43, 303-306. https://doi.org/10.1016/j.bej.2008.10.016
  23. Jha, A.K., Prasad, K., Prasad, K. and Kulkarni, A.R. (2009c), "Plant system: nature's nanofactory", Colloids Surf. B: Biointerfaces, 73, 219-223. https://doi.org/10.1016/j.colsurfb.2009.05.018
  24. Jha, A.K., Prasad, K., Kumar, V. and Prasad, K. (2009d), "Biosynthesis of silver nanoparticles using Eclipta leaf", Biotechnol. Prog., 25, 1476-1479. https://doi.org/10.1002/btpr.233
  25. Jha, A.K., Prasad, K. and Kulkarni, A.R. (2007), "Microbe mediated nanotransformation: cadmium", NANO: Brief Rep. Rev., 2, 239-242.
  26. Jain, D., Daima, H.K., Kachhwaha, S. and Kothari, S.L. (2009), "Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their antimicrobial activities", Digest J. Nanomater. Biostruct., 4, 557-563.
  27. Joerger, R., Klaus, T. and Granqvist, C.G. (2001), "Biologically produced silver-carbon composite materials for optically functional thin-film coating", Adv. Mater., 12, 407-409.
  28. Klaus, T., Joerger, R., Olsson, E. and Granqvist, C.G. (2001), "Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science", Trends Biotechnol., 19, 15-20. https://doi.org/10.1016/S0167-7799(00)01514-6
  29. Kotakadi, V.S., Subba Rao, Y., Gaddam, S.A., Prasad, T.N.V.K.V., Reddy, A.V. and Sai Gopal, D.V.R. (2013), "Simple and rapid biosynthesis of stable silver nanoparticles using dried leaves of Catharanthus roseus. Linn. G. Donn and its antimicrobial activity", Colloids Surf. B: Biointerfaces, 105, 194-198. https://doi.org/10.1016/j.colsurfb.2013.01.003
  30. Li, S., Shen, Y., Xie, A., Yu, X., Qiu, L., Li, Z. and Zhang, Q. (2007), "Green synthesis of silver nanoparticles using Capsicum annum L. extract", Green Chem., 9, 852-858. https://doi.org/10.1039/b615357g
  31. Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S.R., Khan, M.I., Parischa, R., Ajaykumar, P.V., Alam, M., Kumar, R. and Sastry, M. (2001), "Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis", Nano Lett., 1, 515-519. https://doi.org/10.1021/nl0155274
  32. Nair, B. and Pradeep, T. (2002), "Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strain", Cryst. Growth Des., 2, 293-298. https://doi.org/10.1021/cg0255164
  33. Philip, D. (2009), "Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract", Spectrochim. Acta Part A, 73, 374-381. https://doi.org/10.1016/j.saa.2009.02.037
  34. Philip, D. (2009), "Honey mediated green synthesis of gold nanoparticles", Spectrochim. Acta Part A, 73, 650-653. https://doi.org/10.1016/j.saa.2009.03.007
  35. Prasad, K. and Jha, A.K. (2009c), "ZnO nanoparticles: synthesis and adsorption study", Nat. Sci., 1, 129-135.
  36. Prasad, K. and Jha, A.K. (2010), "Biosynthesis of CdS nanoparticles: An improved green and rapid procedure", J. Colloid. Int. Sci., 342, 68-72. https://doi.org/10.1016/j.jcis.2009.10.003
  37. Prasad, K., Jha, A.K., Prasad, K. and Kulkarni, A.R. (2010a), "Can microbes mediate nano-transformation?", Ind. J. Phys., 84, 1355-1360. https://doi.org/10.1007/s12648-010-0126-8
  38. Sadowski, Z., Maliszewska, I.H., Grochowalska, B., Polowczyk, I. and Kozlecki, T. (2008), "Synthesis of silver nanoparticles using microorganisms", Mater. Sci.-Poland, 26, 419-424.
  39. Selvaraj, A., Balamurugan, K., Yepiskoposyan, H., Zhou, H., Egli, D., Georgiev, O., Thiele, D.J. and Schaffner, W. (2005), "Metal-responsive transcription factor (MTF-1) handles both extremes, copper load and copper starvation, by activating different genes", Genes Dev., 19, 891-896. https://doi.org/10.1101/gad.1301805
  40. Shankar, S.S., Ahmad, A., Pasricha, R. and Sastry, M. (2003), "Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes", J. Mater. Chem., 13, 1822-1826. https://doi.org/10.1039/b303808b
  41. Shankar, S.S., Rai, A., Ahmad, A. and Sastry, M. (2004), "Rapid synthesis of Au, Ag and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth", J. Colloid. Interface. Sci., 275, 496-502. https://doi.org/10.1016/j.jcis.2004.03.003
  42. Shankar, S.S., Rai, A., Ahmad, A. and Sastry, M. (2003), "Geranium leaf assisted biosynthesis of silver nanoparticles", Biotechnol. Prog., 19, 1627-1631. https://doi.org/10.1021/bp034070w
  43. Song, J.Y. and Kim, B.S. (2009), "Rapid biological synthesis of silver nanoparticles using plant leaf extracts", Bioprocess Biosyst. Engg., 32, 79-84. https://doi.org/10.1007/s00449-008-0224-6
  44. Stuart, G.W., Searle, P.F., Chen, H.Y., Brinster, R.L. and Palmiter, R.D. (1984), "A 12-base-pair DNA motif that is repeated several times in metallothionein gene promoters confers metal regulation to a heterologous gene", Proc. Natl. Acad. Sci. USA, 81, 7318-7322. https://doi.org/10.1073/pnas.81.23.7318
  45. Subba Rao, Y., Kotakadi, V.S., Prasad, T.N.V.K.V., Reddy, A.V. and Sai Gopal D.V.R. (2013), "Green synthesis and spectral characterization of silver nanoparticles from Lakshmi tulasi (Ocimum sanctum) leaf extract", Spectrochim. Acta Part A, 103, 156-159. https://doi.org/10.1016/j.saa.2012.11.028

Cited by

  1. Synthesis of silver nanoparticles employing fish processing discard: an eco-amenable approach vol.2, pp.3, 2014, https://doi.org/10.1080/22243682.2014.930796
  2. Now the household mosquitoes (CulexSp.) synthesize CdS nanoparticles! vol.4, pp.2, 2016, https://doi.org/10.1080/22243682.2016.1160256
  3. Evaluating the bioreducing potential of the leaves, knobs and roots of Zanthoxylum capense (small knobwood) for the synthesis of silver nanoparticles, applicable to in vitro fungal contamination control vol.8, pp.4, 2017, https://doi.org/10.1088/2043-6254/aa84ed
  4. Biological green synthesis of gold and silver nanoparticles vol.2, pp.3, 2014, https://doi.org/10.12989/anr.2014.2.3.135
  5. Combined NMR and Computational Study of Cysteine Oxidation during Nucleation of Metallic Clusters in Biological Systems vol.60, pp.6, 2013, https://doi.org/10.1021/acs.inorgchem.1c00321