DOI QR코드

DOI QR Code

Concrete arch bridges built by lattice cantilevers

  • Received : 2012.08.29
  • Accepted : 2013.02.19
  • Published : 2013.03.10

Abstract

In this paper a study about concrete arch bridges built by lattice cantilevers is presented. Lattice cantilevers are partial structures composed of deck, arch, piers and provisional steel diagonals, organized as reticular cantilever girders, in order to build arch bridges without the use of centrings, supports or temporary towers. Characteristics of this construction methodology with its variants are explained together with their implications in the erection sequence. Partial elastic scheme method is implemented in order to find initial forces of temporary cables and a forward analysis is carried out to follow the actual sequence of construction, by extending a procedure already applied to concrete cable-stayed bridges and to arches built by the classical suspended cantilever method. A numerical application on a case-study of a concrete arch bridge is performed together with a comparison between different methodologies followed for its construction sequence. Differences between erection by lattice cantilevers and cable-stayed cantilevers, are discussed. Results can be useful for designers in conceptual design of concrete arch bridges.

Keywords

References

  1. American Concrete Institute (ACI) (1997), Prediction of creep, shrinkage, and temperature effects in concrete structures. ACI 209R-92, reported by ACI Committee 209, 1-47, reapproved 1997.
  2. American Concrete Institute (ACI) (2008), 209.2R08 -Guide for modelling and calculating shrinkage and creep in hardned concrete, reported by ACI Committee 209, 1-45
  3. Adão da Fonseca, A. and Bastos, R. (2004), "The Infante Dom Henrique Bridge over the river Douro: construction method, monitoring equipment and structural control", Evoluzione nella sperimentazione per le costruzioni, CIAS, Bolzano, 41-76.
  4. Adao da Fonseca, A. and Millanes Mato, F. (2005), "Infant Henrique Bridge over the river Douro, Porto", Structural Engineering International, 15(2), 85-87. https://doi.org/10.2749/101686605777963251
  5. Arenas de Pablo, J.J., Hacar Rodriguez, F., Garcia-Arango, I., Gonzalez, M., Gurriaran, R. and Pantaleon, M.J. (1997), "Carretera Nacional 632 de Ribadesella a Luarca. Tramo Novellana Cadavedo; Arco de la Regenta, Viaducto Pintor Ferrios" ("National Road 632 from Ribadesella to Luarca. Novellana-Cadavedo, La Regenta Arch, Pintor Ferrios Viaduct"), Revista de obras publicas, Madrid, 363(3), 17-43.
  6. Arici, M. and Granata, M.F. (2007), "Analysis of curved incrementally launched box concrete bridges using Transfer Matrix Method", Bridge Structures, 3(3-4), 165-181. https://doi.org/10.1080/15732480701510445
  7. Arici M., Granata M.F., Recupero A. (2011) "The influence of time-dependent phenomena in segmental construction of concrete cable-stayed bridges", Bridge Structures, 7(4), 125-137.
  8. Brenni, L. and Dazio, G. (1987), "The arch bridge over the Crotta Valley in Canton Ticino", L'industria italiana del cemento, LVII (5), 310 - 329.
  9. Chen, W.F. and Duan, L. (1999), Bridge Engineering Handbook, CRC Press, Washington.
  10. Chiorino, M.A. (2005), "A Rational Approach to the Analysis of Creep Structural Effects", Shrinkage and Creep of Concrete, Gardner & Weiss Ed., ACI SP-227, 107-141, American Concrete Institute.
  11. Corres Peiretti, H., Romo Martín, J, Pérez Caldentey, A., Ruiz Herranz, A. and Sanchez Delgado, J. (2001), "Arch bridge over the Burguillo reservoir (Avila), Design, construction supervision and monitoring", Hormigon y Acero, 220, 3-17.
  12. Fernandez Troyano, L. (2003), Bridge engineering: a global perspective, Thomas Telford.
  13. Fernandez Troyano, L. (2004), "Procedures for the construction of large concrete arches", Roca, P and Molins, C., ARCH BRIDGES IV, Cimne, Barcelona, 53-63.
  14. Fib (2012), Bulletin d'Information n. 65 - Model Code 2010 - Final draft, Volume 1, fib, Lausanne, 350.
  15. Granata, M.F., Margiotta, P., Recupero, A. and Arici M. (2012a), "Partial elastic scheme method in cantilever construction of concrete arch bridges", Journal of Bridge Engineering ASCE, 10.1061/(ASCE)BE.1943-5592.0000396.
  16. Granata, M.F., Margiotta, P., Arici, M. and Recupero, A. (2012b), "Construction stages of cable-stayed bridges with Composite deck", Bridge Structures, IOS Press, 8(3-4), 93-106.
  17. Granata, M.F., Margiotta, P. and Arici, M. (2013a), "A parametric study of curved incrementally launched bridges", Engineering Structures, 49, 373-384. https://doi.org/10.1016/j.engstruct.2012.11.007
  18. Granata, M.F., Margiotta, P. and Arici, M. (2013b), "A simplified procedure for evaluating the effects of creep and shrinkage on prestressed concrete girder bridges and the application of European and North- American prediction models", Journal of Bridge Engineering ASCE, doi:10.1061/(ASCE)BE.1943- 5592.0000483.
  19. Llago Acero, R. (2006), "Concrete arch bridges. Considerations on cantilevered advance", Revista de Obras Publicas, 3(470), 7-22.
  20. Leonhardt, F. (1986), Ponts - Puentes, Presses Polytechniques Romandes, Lausanne.
  21. Manterola Armisen, J. (2006), Puentes: apuntes para su diseno, calculo y contruccion, ("Bridges. Notes for design, calculus and construction"), Esc. Tec. Sup. De Ingenieros De Caminos, Canales y Puertos, Madrid.
  22. Ma, Y.S., Wang, Y.F. and Mao, Z.K. (2011), "Creep effects on dynamic behavior of concrete filled steel tube arch bridge", Structural Engineering and Mechanics, 37(3), 321-330. https://doi.org/10.12989/sem.2011.37.3.321
  23. Missbauer, P. (1981), "Arched bridge constructed utilizing the segment by segment cantilever method in Switzerland", L'industria italiana del cemento, LI (6), 379-388.
  24. Ozden Caglayan, B., Ozakgul, K. and Tezer, O. (2012), "Assessment of a concrete arch bridge using static and dynamic load tests", Structural Engineering and Mechanics, 41(1), 83-94, https://doi.org/10.12989/sem.2012.41.1.083
  25. Pepponi, L.C. (2000), "La Regenta Ana Ozores arch for the Pintor Ferrios viaduct across the river cabo, Spain", L'industria italiana del cemento, 759, 840-853.
  26. Perez Fadon, S. and Herrero Beneitez, J.E. (1999), "Project and construction of the Ricobayo arch bridge", Hormigon y Acero, 212, 5-24.
  27. Perez Fadon, S., Herrero Beneitez, J.E., Sanchez, J.J. and Sanchez, M. (2005), "Los Tilos Arch on La Palma Island (Canary Island)", Hormigon y Acero, 236, 5-34.
  28. Ranalli, M. (1976), "Il ponte sulla rada di Brisbane nel South Wales in Australia" ("The bridge over Brisbane harbour in South Wales, Australia"), L'industria italiana del cemento, XLVI(4), 221-236.
  29. Recupero, A. and Granata, M.F. (2013), "A mixed approach for the determination of initial cable forces in cable-stayed bridges and the parameters variability", The Baltic Journal of Road and Bridge Engineering, Vol. VIII-IX. (In press)
  30. Sirolli, R. and Capitanio, S. (1986), "The Bloukrans prestressed concrete arch bridge, the biggest on the African continent", L'industria italiana del cemento, LVI(3), 284-309.
  31. Stojadinovic, M. and Huet, M. (1981), "La construction des ponts de Krk", Travaux Publics, 189, 35-43.
  32. Wang, P.H., Tang, T.Y. and Zheng, H.N. (2004), "Analysis of cable-stayed bridges during construction by cantilever methods", Computers and Structures, 82, 329-346. https://doi.org/10.1016/j.compstruc.2003.11.003

Cited by

  1. Bending-Shear Interaction Domains for Externally Prestressed Concrete Girders vol.2013, 2013, https://doi.org/10.1155/2013/580646
  2. Conceptual design of prestressed slab bridges through one-way flexural load balancing vol.48, pp.5, 2013, https://doi.org/10.12989/sem.2013.48.5.615
  3. Simplified Procedure for Evaluating the Effects of Creep and Shrinkage on Prestressed Concrete Girder Bridges and the Application of European and North American Prediction Models vol.18, pp.12, 2013, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000483
  4. Arch First and Beam Later: Arch-Rib Integral Installation Construction Technology for Large-Span Tied-Arch Bridge vol.143, pp.8, 2017, https://doi.org/10.1061/(ASCE)CO.1943-7862.0001356
  5. A mixed approach for determination of initial cable forces in cable-stayed bridges and the parameters variability vol.10, pp.2, 2015, https://doi.org/10.3846/bjrbe.2015.18
  6. Partial Elastic Scheme Method in Cantilever Construction of Concrete Arch Bridges vol.18, pp.7, 2013, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000396
  7. Structural analysis and improvement for a new form traveler in long-span cantilever-casting arch bridge vol.13, pp.4, 2013, https://doi.org/10.1177/16878140211009997
  8. Steel and composite tied-arch bridges: a conceptual approach to structural design vol.174, pp.4, 2013, https://doi.org/10.1680/jbren.20.00035