• Title/Summary/Keyword: staged construction

Search Result 36, Processing Time 0.023 seconds

A Study on the Effect of Facing System and Staged Construction Procedures in GRS Walls for Application in Railroad Structures (철도구조물 적용을 위한 보강토옹벽 벽체시스템과 단계시공의 효과에 관한 연구)

  • Won, Myoung-Soo;Kwon, Oh-Hyun;Kim, Young-Shin;Bang, Yoon-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.359-366
    • /
    • 2009
  • The present paper analyzes and discusses the effect of facing system and staged construction in GRS (geosynethetic reinforced soil) walls for railway structures throughout various case analyses. The result shows that postconstruction facing system by staged construction procedures is more advantageous for railway structure construction than preconstruction and simultaneous construction facing system with reinforced soil.

  • PDF

Interface slip of post-tensioned concrete beams with stage construction: Experimental and FE study

  • Low, Hin Foo;Kong, Sih Ying;Kong, Daniel;Paul, Suvash Chandra
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.173-183
    • /
    • 2019
  • This study presents experimental and numerical results of prestressed concrete composite beams with different casting and stressing sequence. The beams were tested under three-point bending and it was found that prestressed concrete composite beams could not achieve monolith behavior due to interface slippage between two layers. The initial stress distribution due to different construction sequence has little effect on the maximum load of composite beams. The multi-step FE analyses could simulate different casting and stressing sequence thus correctly capturing the initial stress distribution induced by staged construction. Three contact algorithms were considered for interaction between concrete layers in the FE models namely tie constraint, cohesive contact and surface-to-surface contact. It was found that both cohesive contact and surface-to-surface contact could simulate the interface slip even though each algorithm considers different shear transfer mechanism. The use of surface-to-surface contact for beams with more than 2 layers of concrete is not recommended as it underestimates the maximum load in this study.

A Study on the Advantage with Staged Construction Procedures and Full-Height Rigid Facing of Geosynthetic Reinforced Soil Retaining Walls (보강토옹벽에서 단계시공과 일체형 강성벽체의 이점에 관한 연구)

  • Won, Myoung-Soo;Kim, You-Seong;Tatsuoka, Fumio
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.3
    • /
    • pp.17-23
    • /
    • 2007
  • To construct an ideal geosynthetic reinforced soil retaining wall (GRS-RW), the facing of the wall should be flexible enough to accommodate a large deformation of the supporting ground and to develop the large tensile force in reinforcements during wall construction as long as the stability is ensured, but should be rigid enough to be stiff and stable as well as durable and aesthetically acceptable for a long life time when the wall is in service. Facing conditions during the construction and service of the wall are quite different. So it is difficult to be satisfied all these conditions with the current construction method which is mainly used in reinforced wall construction in Korea. Most of this contradiction could be solved by the staged construction procedure. According to the results of cases and references analyses, stage construction procedures make it possible to accommodate large deformation of the supporting ground and backfill without losing the stability of the wall, and to derive the tensile strength of reinforcement causing deformation of the facing. When the facing is a full-height rigid one, it also appeared almost impossible to occur a local shear failure of the active zone, and pull-out failure of reinforcements. Therefore, GRS-RWs having a full-height rigid facing have been constructed by the staged construction procedures that matched well with the theory of reinforced soil, which had outstanding stability and durability, and thus could be used for railways and bridge abutments in Korea in the future.

  • PDF

Settlement Prediction for Staged Filling Construction Using SPSFC Method (SPSFC법을 이용한 단계성토 시 침하량 예측)

  • Kang, Seonghyeon;Kim, Taehyung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.97-107
    • /
    • 2014
  • Settlement prediction has been conducted using Hyperbolic, Hoshino, and Monden methods, etc in the fields. These methods are only able to predict settlement after finishing the final filling stage. A new method is proposed to make up for such a weak point. This method was named as SPSFC (Settlement Prediction for Staged Filling Construction) method, which can be able to predict the settlement both the final filling stage and the staged filling from the initial filling stage in soft ground. To verify the applicability of the SPSFC method, firstly. The settlement predicted by the existed methods are compared with that obtained by the SPSFC method. The comparison results indicate the SPSFC has enough reliability to use for prediction of settlement. Secondly. by analyzing the settlement data measured during the initial filling stage, the soil parameters which need to predict the settlement are obtained by the SPSFC method. Then using the obtained soil parameters the time-settlement curve is predicted and compared. The predicted settlement is well matched with the measured one. From the study, the SPSFC method can be possible to predict settlement during the staged filling with only the initial settlement data.

Simplified sequential construction analysis of buildings with the new proposed method

  • Afshari, Mohammad Jalilzadeh;Kheyroddin, Ali;Gholhaki, Majid
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.77-88
    • /
    • 2017
  • Correction Factor Method (CFM) is one of the earliest methods for simulating the actual behavior of structure according to construction sequences and practical implementation steps of the construction process which corrects the results of the conventional analysis just by the application of correction factors. The most important advantages of CFM are the simplicity and time-efficiency of the computations in estimating the final modified forces of the beams. However, considerable inaccuracy in evaluating the internal forces of the other structural members obtained by the moment equilibrium equation in the connection joints is the biggest disadvantage of the method. This paper proposes a novel method to eliminate the aforementioned defect of CFM by using the column shortening correction factors of the CFM to modify the axial stiffness of columns. In this method, the effects of construction sequences are considered by performing a single step analysis which is more time-efficient when compared to the staged analysis especially in tall buildings with higher number of elements. In order to validate the proposed method, three structures with different properties are chosen and their behaviors are investigated by application of all four methods of: conventional one-step analysis, sequential construction analysis (SCA), CFM, and currently proposed method.

THREE-STAGED RISK EVALUATION MODEL FOR BIDDING ON INTERNATIONAL CONSTRUCTION PROJECTS

  • Wooyong Jung;Seung Heon Han
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.534-541
    • /
    • 2011
  • Risk evaluation approaches for bidding on international construction projects are typically partitioned into three stages: country selection, project classification, and bid-cost evaluation. However, previous studies are frequently under attack in that they have several crucial limitations: 1) a dearth of studies about country selection risk tailored for the overseas construction market at a corporate level; 2) no consideration of uncertainties for input variable per se; 3) less probabilistic approaches in estimating a range of cost variance; and 4) less inclusion of covariance impacts. This study thus suggests a three-staged risk evaluation model to resolve these inherent problems. In the first stage, a country portfolio model that maximizes the expected construction market growth rate and profit rate while decreasing market uncertainty is formulated using multi-objective genetic analysis. Following this, probabilistic approaches for screening bad projects are suggested through applying various data mining methods such as discriminant logistic regression, neural network, C5.0, and support vector machine. For the last stage, the cost overrun prediction model is simulated for determining a reasonable bid cost, while considering non-parametric distribution, effects of systematic risks, and the firm's specific capability accrued in a given country. Through the three consecutive models, this study verifies that international construction risk can be allocated, reduced, and projected to some degree, thereby contributing to sustaining stable profits and revenues in both the short-term and the long-term perspective.

  • PDF

Characteristics of UBC and NOx Emission in Air Staging Combustion (공기 다단 연소 기법 적용에 따른 미연탄소분 및 질소산화물 배출특성)

  • Kim, Jeong Woo;Lim, Ho;Go, Young Gun;Jeon, Chung Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.10
    • /
    • pp.637-644
    • /
    • 2016
  • The purpose of this study is to understand the characteristics of unburned carbon (UBC) and NOx emissions for pulverized coal when air staging combustion is applied. A two-staged drop tube furnace capable of applying air staging combustion was designed and installed. The combustion of sub-bituminous (Tanito) has been investigated. UBC and the NOx concentration were measured under various temperatures and stoichiometric ratios in unstaged and staged combustion. As a result, UBC decreased and the NOx concentration increased with an increase in stoichiometric ratio and temperature. In particular, the NOx reduction mechanism was activated when the temperature in the fuel rich zone increased. Both UBC and the NOx concentration decreased as the temperature increased in the fuel rich zone. A high NOx reduction effect was obtained, compared to the UBC increase, when the air staging technique was applied.