DOI QR코드

DOI QR Code

Numerical Hydrodynamic Modeling Incorporating the Flow through Permeable Sea-Wall

투수성 호안의 해수유통을 고려한 유동 수치모델링

  • Received : 2013.03.13
  • Accepted : 2013.04.05
  • Published : 2013.04.30

Abstract

The Inner Port Phase 2 area of the Pyeongtaek-Dangjin Port is enclosed by a total of three permeable sea-walls, and the disposal site to the east of the Inner Port Phase 2 is also enclosed by two permeable sea-walls. The maximum tidal range measured in the Inner Port Phase 2 and in the disposal site in May 2010 is 4.70 and 2.32 m, respectively. It reaches up to 54 and 27%, respectively of 8.74 m measured simultaneously in the exterior. Regression formulas between the difference of hydraulic head and the rate of interior water volume change, are induced. A three-dimensional numerical hydrodynamic model for the Asan Bay is constructed incorporating a module to compute water discharge through the permeable sea-walls at each computation time step by employing the formulas. Hydrodynamics for the period from 13th to 27th May, 2010 is simulated by driving forces of real-time reconstructed tide with major five constituents($M_2$, $S_2$, $K_1$, $O_1$ and $N_2$) and freshwater discharges from Asan, Sapkyo, Namyang and Seokmoon Sea dikes. The skill scores of modeled mean high waters, mean sea levels and mean low waters are excellent to be 96 to 100% in the interior of permeable sea-walls. Compared with the results of simulation to obstruct the flow through the permeable sea-walls, the maximum current speed increases by 0.05 to 0.10 m/s along the main channel and by 0.1 to 0.2 m/s locally in the exterior of the Outer Sea-wall of Inner Port. The maximum bottom shear stress is also intensified by 0.1 to 0.4 $N/m^2$ in the main channel and by more than 0.4 $N/m^2$ locally around the arched Outer Sea-wall. The module developed to compute the flow through impermeable seawalls can be practically applied to simulate and predict the advection and dispersion of materials, the erosion or deposion of sediments, and the local scouring around coastal structures where large-scale permeable sea-walls are maintained.

평택 당진항 내항 2공구 수역은 3개의 투수성 호안으로, 그리고 내항 2공구 동측의 투기장 수역은 2개의 투수성 호안으로 둘러싸여 있다. 2010년 5월에 관측된 내항 2공구 외곽호안 내측 수역과 내항 2공구 투기장 내측 수역의 최대조차는 각각 4.70 m와 2.32 m로서, 동시에 호안 외측에서 관측된 최대조차 8.74 m의 54%와 27%에 달한다. 호안 내 외수위차와 내측 수용적 변화율간의 회귀식을 도출하고, 이 식을 이용하여 투수성 호안의 해수 유통량을 매 계산시간마다 산정하는 모듈을 EFDC 모델에 추가하여 아산만의 3차원 해수유동 수치모형을 구축하였다. 2010년 5월 13~27일의 모의기간에 대하여 주요 5개 분조($M_2$, $S_2$, $K_1$, $O_1$, $N_2$)의 합성조석과 아산, 삽교, 남양, 석문방조제의 담수방류량을 실시간으로 입력하여 해수유동을 모의하였다. 2공구 내측과 2공구 투기장 내측에서 평균고조위, 평균해면과 평균저조위의 실측치에 대한 모델치의 skill score는 96~100%로서 매우 양호한 재현율을 보인다. 투수성 호안의 해수유통을 차단한 모의결과와 비교하면, 최강유속은 주수로를 따라 0.05~0.10 m/s 증가하고, 2공구 외곽호안 외측에서 국지적으로 0.1~0.2 m/s 증가한다. 해저면 전단응력은 유속이 강한 주수로에서 0.1~0.4 $N/m_2$의 범위로 증가하고, 2공구 외곽호안 우각부 주변에서 국지적으로 0.4 $N/m_2$ 이상 증가한다. 본 연구에서 적용한 투수성 호안의 해수유통 모의기법은 대규모 투수성 호안이 유지되는 해역에서 물질의 이류 확산과 해저지형의 침식 퇴적 및 호안 주변의 국부 세굴 등을 모의 예측하는데 유용하게 적용될 수 있다.

Keywords

References

  1. 국립해양조사원 (2008). 황해 아산만 중앙천퇴 거동 연구. 11-1611234-000017-01, 한국지질자원연구원, 137p.
  2. 국립해양조사원 (2009). 황해 경기만 해저지형변화 연구. 11-1611000-000936-01, 132p.
  3. 김태윤, 윤한삼 (2011). 해수유동모델 검증을 위한 오차평가방법 비교 연구. 한국해양환경공학회지, 14(2), 107-113.
  4. 박문진 (2008). 화옹 (남양만) 방조제에 따른 아산만의 조석변화. 한국해양학회지 바다, 13(4), 320-324.
  5. 박병준, 이상화 (2008). 아산만 방조제 배수갑문 확장사업에 따른 주변해역 수리현상 변화 검토. 한국해안.해양공학회논문집, 20(2), 184-193.
  6. 박춘식, 김종환, 이선일 (2012). 현장조사와 침투모형시험을 통한 방조제 침투특성 연구. 한국해안.해양공학회논문집, 24(4), 247-256. https://doi.org/10.9765/KSCOE.2012.24.4.247
  7. 서승원 (2011). 서해연안 상세해상을 통한 천해조석 및 조석비대칭 재현. 한국해안.해양공학회논문집, 23(4), 313-325.
  8. 서승원, 조완희 (2007). 새만금호 완공전후의 수동역학변화 해석. 대한토목학회논문집, 27(3B), 361-369.
  9. 윤병일, 우승범 (2012). 한강하구 수로별 순 수송량과 대.소조기 변화에 따른 염하수로의 순 수송량 변동에 관한 수치해석적 연구. 한국해안.해양공학회논문집, 24(4), 257-268. https://doi.org/10.9765/KSCOE.2012.24.4.257
  10. 정광영, 노영재 (2010). 남해 강진만에서 성층 형성과 성층 파괴 과정. 한국해양학회지 바다, 15(3), 97-109.
  11. 정신택, 소재귀, 채장원 (1994). 인천해역 개발에 따른 조석변화 추정. 한국해안.해양공학회지, 6(3), 266-274.
  12. 정태성 (2006). 투수성 호안제체를 통한 해수교환을 고려한 해수유동 모의. 한국해안.해양공학회지, 18(4), 301-307.
  13. 정태성, 김성곤, 강시환 (2002). 3차원 흐름 모델링시스템(FEMOS)을 이용한 아산만 조류모의. 한국해안.해양공학회지, 14(2), 151-160.
  14. 정태성, 김진원, 박문진 (2000). GUI를 이용한 아산만의 조석 및 조류 예측시스템. 대한토목학회논문집, 20(2-B), 293-303.
  15. 조홍연, 조범준, 김상준 (2008). 계절별 염분 자료를 이용한 아산만 연안의 담수 영향범위 추정. 한국해안해양공학회논문집,20(2), 219-231.
  16. 최병호 (1983). 경기만의 3차원 유동 해석모델. 한국해양학회지, 18(1), 10-20.
  17. 최양호, 노영재, 전호경 (2002). 서해 아산만 당진화력발전소 인근해역 수온 변동 특성. 한국해양학회지 바다, 7(2), 43-50.
  18. 최흥식 (2004a). 호안제체에서 Non-Darcy 흐름해석. 한국수자원학회논문집, 37(2), 87-96. https://doi.org/10.3741/JKWRA.2004.37.2.087
  19. 최흥식 (2004b). Non-Darcy 흐름특성을 고려한 최종체절 수치 특성분석. 한국수자원학회논문집, 37(8), 613-622.
  20. 평택지방해양항만청 (2010). 평택당진항 수리현상조사 보고서. (주)지오시스템리서치, (주)해양정보기술, 436p.
  21. Bell, C., Vassie, J.M. and Woodworth, P.L. (1999). POL/PSMSL Tidal Analysis Software Kit 2000 (Task-2000), Permanent Service for Mean Sea Level, CCMS Proudman Oceanographic Laboratory, Bidston Observatory, Birkenhead, Meyseyside CH43 7RA, U.K., 21p.
  22. Forman, M.G.G. (1978). Manual for Tidal Currents Analysis and Prediction, Pacific Marine Science Report 78-6, Institute of Ocean Sciences, Patricia Bay, Sidney, B.C., 57p.
  23. Hamrick, J.M. (1994). Application of the EFDC, Environmental Fluid Dynamics Computer Code to SFWMD Water Conservation Area 2A. A Report to South Florida Water Management District, JMH-SFWMD-94-01.
  24. Hamrick, J.M. and Moustafa, M.Z. (1996). Development of the Everglades wetlands hydrodynamic model: 1. Model formulation and physical process representation. In review.
  25. Ji, L. and Gallo, K. (2006). An agreement coefficient for image comparison. Photogrametric Engineering & Remote Sensing, 72(7), 823-833. https://doi.org/10.14358/PERS.72.7.823
  26. Keulegan, G.H. (1967) Tidal flow in entrances: water level fluctuations of basins in communication with seas. Technical Bulletin No. 14, Committee on Tidal Hydraulics, U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, Mississippi.
  27. Li, B., Garga, V.K. and Davies, M.H. (1998). Relationship for non-Darcy flow in rockfill. Journal of Hydraulic Engineering, ASCE, 124(2), 206-212. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:2(206)
  28. Mellor, G.L. and Yamada, T. (1982). Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851-875. https://doi.org/10.1029/RG020i004p00851
  29. Murray, M.T. (1964). A general method for the analysis of hourly heights of the tide. International Hydrographic Review, 41(2), 91-101.
  30. Park, M.J. (2000). Modeling of sediment transport and sand bank formation in a macrotidal sea. Journal of the Korean Society of Oceanography, 35(1), 1-10.
  31. Smagorinsky, J. (1963). General circulation experiments with the primitive equations, I. The basic experiment. Mon. Weather Rev., 91, 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

Cited by

  1. Residence Time Variation by Operation of Sihwa Tidal Power Plant in Outer Sea of Sihwa Lake vol.29, pp.5, 2017, https://doi.org/10.9765/KSCOE.2017.29.5.247