DOI QR코드

DOI QR Code

Experimental Testing of Curved Aluminum Honeycomb/CFRP Sandwich Panels

곡면형상의 알루미늄 하니콤/CFRP 샌드위치 패널에 관한 실험적 연구

  • Roy, Rene (Department of Aerospace and System Engineering, Research Center for Aircraft Parts Technology, Gyeongsang National University) ;
  • Park, Yong-Bin (Department of Aerospace and System Engineering, Research Center for Aircraft Parts Technology, Gyeongsang National University) ;
  • Kweon, Jin-Hwe (Department of Aerospace and System Engineering, Gyeongsang National University) ;
  • Choi, Jin-Ho (School of Mechanical Engineering, Gyeongsang National University)
  • Received : 2012.12.05
  • Accepted : 2013.03.18
  • Published : 2013.04.30

Abstract

This paper presents the fabrication and 3-point flexion testing of carbon fiber reinforced polymer (CFRP) composite face/aluminum honeycomb core sandwich panels. Specimen sandwich panels were fabricated with three honeycomb types (3.18 mm, 4.76 mm, and 6.35 mm cell size) and three panel radii (flat, r = 1.6 m, r = 1.3 m). The curved sandwiches were fabricated normally with the core in the W-direction. The tensile mechanical properties of the CFRP $2{\times}2$ twill fabric face laminate were evaluated (modulus, strength, Poisson's ratio). The measured values are comparable to other CFRP fabric laminates. The flat sandwich 3-point flexion test core shear strength results were 11-30% lower than the manufacturer published data; the test set-up used may be the cause. With a limited sample size, the 1.3 meter panel curvature appeared to cause a 0.8-3.8% reduction in ultimate core shear strength compared to a flat panel.

본 논문에서는 탄소섬유강화플라스틱 면재와 알루미늄 샌드위치 심재를 가지는 복합재 샌드위치의 제조와 3절점 굽힘 실험에 대해 연구하였다. 시편은 3가지 하니컴 종류(3.18 mm, 4.76 mm, 6.35 mm의 셀 크기)와 3가지 곡률 반지름(평판, r = 1.6 m, r = 1.3 m)을 가지도록 제작하였다. 샌드위치 곡률의 기준은 W-방향을 기준으로 제작 하였다. CFRP $2{\times}2$ 트윌의 인장에서 기계적 물성치(탄성계수, 강도, 푸아송 비)를 측정하여 그 값들을 다른 CFRP 섬유 적층판의 값과 비교하였다. 실험결과 평판 샌드위치 패널의 3절점 굽힘 실험에서 심재의 전단강도는 공개된 데이터에 비해 11-30% 낮게 나왔다. 제한된 시편 크기에서 1.3미터 곡률을 가지는 패널은 평판 패널에 비해 심재의 극한 전단강도가 0.8-3.8% 감소한 것으로 나타났다.

Keywords

References

  1. Wahl, L., Maas, S., Waldmann, D., Zürbes, A., and Frères, P., "Shear Stresses in Honeycomb Sandwich Plates: Analytical Solution, Finite Element Method and Experimental Verification," Journal of Sandwich Structures and Materials, Vol. 14, No. 4, 2012, pp. 449-468. https://doi.org/10.1177/1099636212444655
  2. PAMG-XR1 5052 Aluminum Honeycomb, Plascore Inc., Zeeland, USA, 2012.
  3. PN2 Aerospace Grade Aramid Fiber Honeycomb, Plascore Inc., Zeeland, USA, 2012.
  4. Paika, J.K., Thayamballib, A.K., and Kima, G.S., "The Strength Characteristics of Aluminum Honeycomb Sandwich Panels," Thin-Walled Structures, Vol. 35, No. 3, 1999, pp. 205-231. https://doi.org/10.1016/S0263-8231(99)00026-9
  5. Jen, Y.M., and Chang, L.Y., "Evaluating Bending Fatigue Strength of Aluminum Honeycomb Sandwich Beams Using Local Parameters," International Journal of Fatigue, Vol. 30, No. 6, 2008, pp. 1103-1114. https://doi.org/10.1016/j.ijfatigue.2007.08.006
  6. Campbell, F.C., Structural Composite Materials, ASM International, Materials Park, USA, 2010.
  7. PAMG-XR1 5056 Aluminum Honeycomb, Plascore Inc., Zeeland, USA, 2012.
  8. HexWeb Honeycomb Attributes and Properties, Hexcel Composite Materials, Pleasanton, USA, 1999.
  9. Lopes-Tavares, S.S., Optimisation of Low Pressure Processing for Honeycomb Sandwich Structures, Ph.D Thesis, Ecole Polytechnique Federale de Lausanne, Switzerland, 2009.
  10. Kratz, J., Processing Composite Sandwich Structures using Outof- Autoclave Technology, Ph.D Thesis, McGill University, Canada, 2009.
  11. ASTM D3039 Standard Test Method for Tensile Properties of Polymer Matrix Composites Materials, ASTM International, West Conshohocken, USA, 2000.
  12. ASTM C393 Standard Test Method for Flexural Properties of Sandwich Constructions, ASTM International, West Conshohocken, USA, 2000
  13. Hubner, M., Diestel, O., Sennewald, C., Gereke, T., and Cherif, C., "Simulation of the Drapability of Textile Semi-Finished Products with Gradient-Drapability Characteristics by Varying the Fabric Weave," Fibres & Textiles in Eastern Europe, Vol. 20, No. 5, 2012, pp. 88-93.
  14. Rozant, O., Bourban, P.-E., and Månson, J.-A.E., "Drapability of Dry Textile Fabrics for Stampable Thermoplastic Preforms," Composites: Part A, Vol. 31, No. 11, 2000, pp. 1167-1177. https://doi.org/10.1016/S1359-835X(00)00100-7
  15. www.skchemicals.com/english2/product/special/ind/flex
  16. Abot, J.L., Yasmin, A., Jacobsen, A.J., and Daniel, I.M., "Inplane Mechanical, Thermal and Viscoelastic Properties of a Satin Fabric Carbon/Epoxy Composite," Composites Science and Technology, Vol. 64, No. 2, 2004, pp. 263-268. https://doi.org/10.1016/S0266-3538(03)00279-3
  17. Tencate TC250 Resin System, TenCate Advanced Composites, Morgan Hill, USA, 2012.
  18. Tomblin, J., Sherraden, J., Seneviratne, W., and Raju, K.S., "ABasis and B-Basis Design Allowables for Epoxy-Based Prepreg TORAY T700SC-12K-50C/#2510 Plain Weave Fabric," National Institute for Aviation Research, Wichita State University, USA, 2002.
  19. Cruz, J.R., Shah, C.H., and Postyn, A.S., "Properties of Two Carbon Composite Materials Using LTM25 Epoxy Resin," NASA Langley Research Center, USA, 1996.

Cited by

  1. 직조 방법에 따른 복합재 파티션 패널의 구조 해석 vol.33, pp.3, 2013, https://doi.org/10.7234/composres.2020.33.3.140