DOI QR코드

DOI QR Code

A Study on Prediction of Fatigue Damage Crack Growth for Stiffener Bonded Composite Laminate Panel

보강재 본딩접합 복합재 적층판구조 피로손상 균열진전 수명예측에 대한 연구

  • 권정호 (울산대학교 기계공학부 항공우주공학전공) ;
  • 정성문 (울산대학교 항공우주공학과 대학원)
  • Received : 2012.12.04
  • Accepted : 2013.04.15
  • Published : 2013.04.30

Abstract

The prediction and analysis procedure of fatigue damage crack growth life for a stiffener bonded composite laminate panel including center hole and edge notch damage, was studied. It was performed on the basis of fatigue damage growth test results on a laminated skin panel specimens and the analysis results of stress intensity factor for the stiffener bonded composite panel. According to the comparison between experimental test and prediction results of fatigue damage growth life, it was concluded that the residual strength and damage tolerance assessment can be carried out along to the edge notch crack growth.

본 연구에서는 적층판 시편의 피로손상 균열진전 시험결과와 적층보강판 구조의 응력강도 해석결과를 기초로 충격손상을 모사한 원공과 노치손상을 내재한 보강재 본딩접합 적층보강판 구조의 피로손상 균열진전 수명예측에 대하여 고찰하였다. 그리고 적층보강판 구조시편에 대한 손상허용 시험결과와 손상진전 수명예측 해석결과를 비교분석한 결과 손상균열 길이 변화에 따라 최종파단에 대한 잔여강도를 예측하고 손상허용성 평가를 할 수 있었다.

Keywords

References

  1. Kinsey, A., "Post-impact Compressive Behaviour of Low Temperature Curing Woven CFRP Laminates," Composite, Vol. 26, No. 9, 1995, pp. 661-667. https://doi.org/10.1016/0010-4361(95)98915-8
  2. Suh, S.S., Han, N.S.L., Yang, J.M., and Hahn, H.T., "Compression Behaviour of Stitched Stiffened Panel with a Clearly Visible Stiffener Impact Damage," Composite Structures, Vol. 62, Issue 2, 2003, pp. 213-221. https://doi.org/10.1016/S0263-8223(03)00116-8
  3. Butler, R., Almond, D.P., Hunt, G.W., Hu, B., and Gathercole, N., "Compressive Fatigue Limit of Impact Damaged Composite Laminates," Composites Part A: Applied Science and Manufacturing, Vol. 38, Issue 4, 2007, pp. 1211-1215. https://doi.org/10.1016/j.compositesa.2006.04.010
  4. Sabelkin, V., Mall, S., and Avram, J.B., "Fatigue Crack Growth Analysis of Stiffened Panel Repaired with Bonded Composite Patch," Engineering Fracture Mechanics, Vol. 73, Issue 11, 2006, pp. 1553-1567. https://doi.org/10.1016/j.engfracmech.2006.01.029
  5. Mouritz, A.P., and Chang, P., "Tension Fatigue of Fiberdominated and Matrix-dominated Laminates Reinforced with Z-pins," International Journal of Fatigue, Vol. 32, Issue 4, 2010, pp. 650-658. https://doi.org/10.1016/j.ijfatigue.2009.09.001
  6. Attia, O., Kinloch, A.J., and Matthews, F.L., "The Prediction of Fatigue Damage Growth in Impact-damaged Composite Skin/ stringer Structures, Part I: Theoritical Modelling Studies," Composites Science and Technology, Vol. 63, Issue 10, 2003, pp. 1463-1472. https://doi.org/10.1016/S0266-3538(03)00164-7
  7. Kassapoglou, C., and Kaminski, M., "Modeling Damage and Load Redistribution in Composites Under Tension-tension Fatigue Loading," Composites Part A: Applied Science and Manufacturing, Vol. 42, Issue 11, 2011, pp. 1783-1792. https://doi.org/10.1016/j.compositesa.2011.08.001
  8. Swift, T., "Fracture Analysis of a Stiffened Structure," ASTM STP 842, 1984, pp. 69-107.
  9. Vlieger, H., "Damage Tolerance of Stiffened Skin Structures," ASTM STP 969, 1988, pp. 169-219.
  10. Halpin, J.C., Johnson, T.A., and Waddoups, M.E., "Kinetic Fracture Models and Structural Reliability," International Journal of Fracture Mechanics, Vol. 8, 1970, pp. 167-174.
  11. Brown, Jr. W., and F., Srawley, J.E., "Plane Strain Crack Toughness Testing of High Strength Metallic Materials," ASTM STP 410, 1966, p. 12.
  12. Kwon, J.H., and Hwang, K.J., "Stress Analysis for Laminated Composite Plate with Circular Hole or Crack Using Complex Potential Method," Journal of The Korean Society For Composite Materials, Vol. 20, No. 5, 2007, pp. 56-63.
  13. Kwon, J.H. and Pavchk, V.N., Complex Potential Method for Stress Intensity Analysis in Stringer Bonded Composite Panel with Impact Damage, Pro. of Int. Symposium IFOST2010, Vol. 1, 2010.