DOI QR코드

DOI QR Code

Square-and-Divide Modular Exponentiation

제곱-나눗셈 모듈러 지수연산법

  • Lee, Sang-Un (Dept. of Multimedia Eng., Gangneung-Wonju National University)
  • 이상운 (강릉원주대학교 멀티미디어공학과)
  • Received : 2013.02.05
  • Accepted : 2013.03.25
  • Published : 2013.04.30

Abstract

The performance and practicality of cryptosystem for encryption, decryption, and primality test are primarily determined by the implementation efficiency of the modular exponentiation of $a^b$ (mod m). To compute $a^b$ (mod m), the standard binary squaring (square-and-multiply) still seems to be the best choice. However, in large b bits, the preprocessed n-ary, ($n{\geq}2$ method could be more efficient than binary squaring method. This paper proposes a square-and-divide and unpreprocessed n-ary square-and-divide modular exponentiation method. Results confirmed that the square-and-divide method is the most efficient of trial number in a case where the value of b is adjacent to $2^k+2^{k-1}$ or to. $2^{k+1}$. It was also proved that for b out of the beforementioned range, the unpreprocessed n-ary square-and-divide method yields higher efficiency of trial number than the general preprocessed n-ary method.

암호학의 암호 생성과 해독, 소수판별법의 성능은 대부분 $a^b$ (mod m)의 모듈러 지수연산의 효율적 구현여부로 결정된다. 모듈러 지수연산법에는 제곱-곱셈 방식의 표준 이진법이 최선의 선택으로 알려져 있다. 그러나 큰 자리수의 b에 대해서는 사전처리를 하는 n-ary, ($n{\geq}2$)이 보다 효율적으로 적용된다. 본 논문에서는 모듈러 지수 나눗셈 방법을 적용한 제곱-나눗셈법과 사전처리 없는 n-ary 제곱-나눗셈법을 제안하였다. 제곱-나눗셈법은 b가 $2^k+2^{k-1}$에 근접한 값 또는 $2^{k+1}$에 근접한 경우 수행횟수 측면에서 가장 효율적임을 알 수 있었다. 나머지 값들에 대해서는 사전처리 없는 n-ary 제곱-나눗셈법을 적용하는 것이 사전처리를 하는 일반적인 n-ary법에 비해 수행횟수 측면에서 효율적임을 보였다.

Keywords

References

  1. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, "Introduction to Algorithms," 2nd Edition, McGrew-Hill Book Company, 2005
  2. M. Alfred, P. C. Oorschot, and S. A. Vanstone, "Handbook of Applied Cryptography," CRC Press, 1996.
  3. S. T. Klein, "Should One Always Use Repeated Squaring for Modular Exponentiation?." Information Processing Letters, Vol. 106, Issue. 6, pp. 232-237, 2008. https://doi.org/10.1016/j.ipl.2007.11.016
  4. D. M. Gordon, "A Survey of Fast Exponentiation Methods," Journal of Algorithms, Vol. 27, No. 1, pp. 129-146, 1998. https://doi.org/10.1006/jagm.1997.0913
  5. P. Montgomery, "Modular Multiplication Without Trial Division," Math. Computation, Vol. 44, pp. 519-521, 1985. https://doi.org/10.1090/S0025-5718-1985-0777282-X
  6. G. Saldamli and C. K. Koc, "Spectral Modular Exponentiation," Proc. of the 18th IEEE Symposium on Computer Arithmetic, pp. 123-132, 2007.
  7. V. Gopal, J. Guilford, E. Ozturk, W. Feghali, G. Wolrich, and M. Dixon, "Fast and Constant-Time Implementation of Modular Exponentiation," 28th International Symposium on Reliable Distributed Systems, Niagara Falls, New York, U.S.A., 2009.
  8. L. Zhong, "Modular Exponentiation Algorithm Analysis for Energy Consumption and Performance," Technical Report CE-01-ZJL, Dept. of Electrical Engineering, Princeton University, 2001.
  9. N. Nedjah and L. M. Mourelle, "Efficient Pre-Processing for Large Window-Based Modular Exponentiation Using Ant Colony," Informatica, Vol. 29, pp. 151-161, 2005.
  10. F. R. Henriquez, "Modular Exponentiation," Arithme'tica Computacional, http://delta.cs.cinvestav.mx/-francisco/arith/expo.pdf.

Cited by

  1. 최단 보폭-최장 보폭 이산대수 알고리즘의 변형 vol.18, pp.8, 2013, https://doi.org/10.9708/jksci.2013.18.8.087
  2. RSA의 오일러 함수 ��(n) 해독 2kβ 알고리즘 vol.19, pp.7, 2013, https://doi.org/10.9708/jksci.2014.19.7.071