• Title/Summary/Keyword: 제곱-나눗셈법

Search Result 4, Processing Time 0.019 seconds

Square-and-Divide Modular Exponentiation (제곱-나눗셈 모듈러 지수연산법)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.4
    • /
    • pp.123-129
    • /
    • 2013
  • The performance and practicality of cryptosystem for encryption, decryption, and primality test are primarily determined by the implementation efficiency of the modular exponentiation of $a^b$ (mod m). To compute $a^b$ (mod m), the standard binary squaring (square-and-multiply) still seems to be the best choice. However, in large b bits, the preprocessed n-ary, ($n{\geq}2$ method could be more efficient than binary squaring method. This paper proposes a square-and-divide and unpreprocessed n-ary square-and-divide modular exponentiation method. Results confirmed that the square-and-divide method is the most efficient of trial number in a case where the value of b is adjacent to $2^k+2^{k-1}$ or to. $2^{k+1}$. It was also proved that for b out of the beforementioned range, the unpreprocessed n-ary square-and-divide method yields higher efficiency of trial number than the general preprocessed n-ary method.

Modular Exponentiation Using a Variable-Length Partition Method (가변길이 분할 기법을 적용한 모듈러 지수연산법)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.41-47
    • /
    • 2016
  • The times of multiplication for encryption and decryption of cryptosystem is primarily determined by implementation efficiency of the modular exponentiation of $a^b$(mod m). The most frequently used among standard modular exponentiation methods is a standard binary method, of which n-ary($2{\leq}n{\leq}6$) is most popular. The n-ary($1{\leq}n{\leq}6$) is a square-and-multiply method which partitions $b=b_kb_{k-1}{\cdots}b_1b_{0(2)}$ into n fixed bits from right to left and squares n times and multiplies bit values. This paper proposes a variable-length partition algorithm that partitions $b_{k-1}{\cdots}b_1b_{0(2)}$ from left to right. The proposed algorithm has proved to reduce the multiplication frequency of the fixed-length partition n-ary method.

A 2kβ Algorithm for Euler function 𝜙(n) Decryption of RSA (RSA의 오일러 함수 𝜙(n) 해독 2kβ 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.71-76
    • /
    • 2014
  • There is to be virtually impossible to solve the very large digits of prime number p and q from composite number n=pq using integer factorization in typical public-key cryptosystems, RSA. When the public key e and the composite number n are known but the private key d remains unknown in an asymmetric-key RSA, message decryption is carried out by first obtaining ${\phi}(n)=(p-1)(q-1)=n+1-(p+q)$ and then using a reverse function of $d=e^{-1}(mod{\phi}(n))$. Integer factorization from n to p,q is most widely used to produce ${\phi}(n)$, which has been regarded as mathematically hard. Among various integer factorization methods, the most popularly used is the congruence of squares of $a^2{\equiv}b^2(mod\;n)$, a=(p+q)/2,b=(q-p)/2 which is more commonly used then n/p=q trial division. Despite the availability of a number of congruence of scares methods, however, many of the RSA numbers remain unfactorable. This paper thus proposes an algorithm that directly and immediately obtains ${\phi}(n)$. The proposed algorithm computes $2^k{\beta}_j{\equiv}2^i(mod\;n)$, $0{\leq}i{\leq}{\gamma}-1$, $k=1,2,{\ldots}$ or $2^k{\beta}_j=2{\beta}_j$ for $2^j{\equiv}{\beta}_j(mod\;n)$, $2^{{\gamma}-1}$ < n < $2^{\gamma}$, $j={\gamma}-1,{\gamma},{\gamma}+1$ to obtain the solution. It has been found to be capable of finding an arbitrarily located ${\phi}(n)$ in a range of $n-10{\lfloor}{\sqrt{n}}{\rfloor}$ < ${\phi}(n){\leq}n-2{\lfloor}{\sqrt{n}}{\rfloor}$ much more efficiently than conventional algorithms.

Integer Factorization for Decryption (암호해독을 위한 소인수분해)

  • Lee, Sang-Un;Choi, Myeong-Bok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.221-228
    • /
    • 2013
  • It is impossible directly to find a prime number p,q of a large semiprime n = pq using Trial Division method. So the most of the factorization algorithms use the indirection method which finds a prime number of p = GCD(a-b, n), q=GCD(a+b, n); get with a congruence of squares of $a^2{\equiv}b^2$ (mod n). It is just known the fact which the area that selects p and q about n=pq is between $10{\cdots}00$ < p < $\sqrt{n}$ and $\sqrt{n}$ < q < $99{\cdots}9$ based on $\sqrt{n}$ in the range, [$10{\cdots}01$, $99{\cdots}9$] of $l(p)=l(q)=l(\sqrt{n})=0.5l(n)$. This paper proposes the method that reduces the range of p using information obtained from n. The proposed method uses the method that sets to $p_{min}=n_{LR}$, $q_{min}=n_{RL}$; divide into $n=n_{LR}+n_{RL}$, $l(n_{LR})=l(n_{RL})=l(\sqrt{n})$. The proposed method is more effective from minimum 17.79% to maxmimum 90.17% than the method that reduces using $\sqrt{n}$ information.