DOI QR코드

DOI QR Code

수평 터널방식 고준위폐기물 처분시스템 주변 열 해석

Thermal Analysis of a Horizontal Disposal System for High-level Radioactive Waste

  • 최희주 (한국원자력연구원 방사성폐기물 처분연구부) ;
  • 김인영 (한국원자력연구원 방사성폐기물 처분연구부) ;
  • 이종열 (한국원자력연구원 방사성폐기물 처분연구부) ;
  • 김현아
  • 투고 : 2013.03.19
  • 심사 : 2013.04.22
  • 발행 : 2013.04.30

초록

경수로 사용 후 핵연료의 파이로 공정 처리를 통해 예상되는 고준위폐기물 처분시스템을 대상으로 열적 성능평가를 수행하였다. 처분방식으로 수평 처분터널 처분시스템을 고려하였다. 수평 처분터널 간격 25 미터와 처분공 간격 2미터를 대상으로 평가하였다. 세라믹폐기물 수평 처분터널 주변의 다양한 위치에 대해 장기간 동안 열 해석을 통하여 온도 변화를 해석하였다. 열 해석은 ABAQUS 프로그램을 이용하였다. 열 해석 결과에 의하면 처분시스템 중 어느 부분에서도 최고 온도가 $100^{\circ}$를 넘지 않아, 열적 성능 기준을 만족하였다. 열 해석 결과에 따르면, 처분시스템 중앙에 위치한 처분용기 주변이 외곽에 위치한 것의 주변보다 최고 온도 기준으로 약 $3^{\circ}$정도 높았다. 이것은 처분시스템 설계시 가능한 외곽에 위치한 처분용기가 많도록 설계하는 것이 처분밀도를 향상시킬 수 있음을 시사하였다.

The thermal analysis is carried out for a geological disposal system developed for the final disposal of a ceramic high-level waste from pyroprocessing of PWR spent fuel. The horizontal disposal tunnel type is considered with the distance of 2 m between the disposal canisters and the tunnel spacing of 25 m. The temperature distributions around the disposal canisters are calculated for the horizontal tunnel based on the conceptual design. The thermal performance analysis is carried out using a FEM program, ABAQUS. The performance analysis shows that the peak temperature in a disposal system outside the disposal canister is lower than $100^{\circ}$, which meets the thermal criterion of the disposal system. According the analysis, the peak temperature for the disposal canister located boundary of the disposal system is lower by $3^{\circ}$ than that for the canister at the central area. This implies the disposal density can be improved by locating more disposal canisters along the boundary.

키워드

참고문헌

  1. 박경우, 고용권, 김경수, 2010, KURT 주변 지역의 지온구배특성, 한국방사성폐기물학회지 2010 추계학술대회 논문집, 185-186.
  2. ABAQUS, 2009, ABAQUS/CAE Ver.6.9, Dassault Systeme Simulia, Inc., USA.
  3. Cho, W. J. and Lee, J. O., Kwon, S. K., 2008a, Thermal Conductivity of Compacted Bentonite and Bentonite-sand Mixture, J. Korean Radioact. Waste Soc., Vol. 6, 101-109.
  4. Cho, W. J., Kwon, S. K., Park, J. H., 2008b, KURT, a small-scale underground research laboratory for the research on a high-level waste disposal, Ann. Nucl. Energy, Vol. 35, 132-140. https://doi.org/10.1016/j.anucene.2007.05.011
  5. Cho, W-J., Kwon, S., and Lee, J-O., 2010, Empirical model to estimate the thermal conductivity of granite with various water contents, J. Korean Radioact. Waste Soc., Vol. 8, 135-142.
  6. Cho, Y-Z., Jung, J-S., Lee, H-S., and Kim, I-T., 2010, Reuse Technology of LiCl Salt Waste Generated from Electrolytic Reduction Process of Spent Oxide Fuel, J. of the Korean Radioactive Waste Society, Vol. 8, 57-63.
  7. Choi, H. J., Lee, M. S., Lee, J. Y., 2010, Application of a cold spray technique to the fabrication of a copper canister for the geological disposal of CANDU spent fuels, Nucl. Eng. Des., Vol. 240, 2714-2720. https://doi.org/10.1016/j.nucengdes.2010.06.038
  8. Choi, H. J., Lee, M. S., Lee, J. Y., 2011, Preliminary Conceptual Design of a Geological Disposal System for High-level Wastes from the Pyroprocessing of PWR Spent Fuels, Nucl. Eng. Des., Vol. 241, 3348-3356. https://doi.org/10.1016/j.nucengdes.2011.06.013
  9. Gauld, I. C., Bowman, S. M., and Horwedel, J. E., 2006, ORIGEN-ARP: Automatic Rapid Processing for Spent Fuel Depletion, Decay, and Source Term Analysis, ORNL/ TM-2005/39, ORNL, USA.
  10. Juvankoski, Markku and Marcos Nuria, 2010, Design Basis for Buffer Components, Working Report 2009-132, POSIVA, Finland.
  11. Kim, E-H., Park, G-I., Cho, Y-Z., and Yang, H-C., 2008, A New Approach to Minimize Pyroprocessing Waste Salts through a Series of Fission Product Removal Process, Nucl. Technol., Vol. 162, 208-218. https://doi.org/10.13182/NT08-A3949
  12. Lee, J. Y., Cho, D. K., Choi, H. J., Choi, J. W., 2007, Concept of Korean Reference Disposal System for Spent Fuels, J. of Nucl. Sci. and Tech., Vol. 44, No. 12, 1565- 1573. https://doi.org/10.1080/18811248.2007.9711407
  13. Lee, J. O., Cho, W. J., Kwon, S. K., 2011, Thermalhydro- mechanical properties of reference Bentonite Buffer for a Korean HLW Repository, Journal of Korean Society for Rock Mechanics, Vol. 21, No. 4, 264-273.
  14. Sizgek, G. D., 2005, Three-dimensional thermal analysis of in-floor type nuclear waste repository for a ceramic waste form, Nucl. Eng. Des., 235, 101-109. https://doi.org/10.1016/j.nucengdes.2004.09.010

피인용 문헌

  1. A Study on the Temperature Distribution of Rock Mass at KAERI Underground Research Tunnel: Verification on the Result of Borehole Heater Test vol.23, pp.4, 2013, https://doi.org/10.7474/TUS.2013.23.4.297