DOI QR코드

DOI QR Code

압축비 변화가 수소-천연가스 엔진의 배기특성에 미치는 영향

Effect of Compression Ratio Change on Emission Characteristics of HCNG Engine

  • Lee, Sung Won (Korea Institute of Machinery and Materials) ;
  • Lim, Gi Hun (Dept. of Environment & Energy Mechanical Engineering, University of Science and Technology) ;
  • Park, Cheol Woong (Korea Institute of Machinery and Materials) ;
  • Choi, Young (Korea Institute of Machinery and Materials) ;
  • Kim, Chang Gi (Korea Institute of Machinery and Materials)
  • 투고 : 2012.10.16
  • 심사 : 2013.02.15
  • 발행 : 2013.05.01

초록

본 연구에서는 천연가스 70%, 수소 30%의 조성비를 가진 HCNG연료와 천연가스를 각각 대형천연가스엔진에 공급하여 실험을 수행하였다. 고압축비의 수소-천연가스(HCNG)엔진의 배기특성을 살펴보기 위하여 부분부하조건에서 공기과잉률 변화에 따른 각 연료의 배출가스를 분석하였다. 실험결과 압축비가 증가함에 따라 열효율이 향상되었으며 그로인해 $CO_2$ 배출량은 감소하였다. 낮은 배기가스온도에 의하여 산화가 활발히 이루어지 못해 CO의 배출량이 증가하였다. 동일한 공기과잉률에서 압축비가 증가하면 $NO_x$의 배출량이 증가하였다. 하지만 ${\lambda}$=1.9이상의 영역에서는 MBT 점화시기가 동일해지기 때문에 압축비의 영향을 받지 않았다.

This study focused on a heavy-duty natural gas engine fuelled with HCNG (CNG: 70 vol%, hydrogen: 30 vol%) and CNG. To study the emission characteristics of an HCNG engine with high compression ratio, the exhaust gas of CNG and HCNG fuel were analyzed in relation to the change in the compression ratio at the half load condition. The results showed that the thermal efficiency improved with an increase in the compression ratio. Consequently, $CO_2$ emission decreased. CO emission increased with inefficient oxidation due to the low exhaust gas temperature. $NO_x$ emission with high compression ratio was increased at the same excess air ratio condition. However, $NO_x$ emission was not affected by a compression ratio exceeding ${\lambda}$ = 1.9 because of the same MBT timing.

키워드

참고문헌

  1. Kim, C. U., Kim, C. G., Kim, S. S., Pang, H. S., Han, J. O. and Cho, Y. S., 1996, "A Strudy on the Performance Improvement for a Natural Gas Engine Under Lean Burn & WOT Condition," Transaction of KSAE, Vol. 4, No. 6, pp. 11-17.
  2. Jahirui, M. I., Masjuki, H. H., Saidur, R., Kalam, M. A., Jayed, M. H. and Wazed, M. A., 2001, "Comparative Engine Performance and Emission Analysis of CNG and Gasoline in a Retrofitted Car Engine," Applied Thermal Engineering, Vol. 30, pp. 2219-2226.
  3. Ball, M. and Wietschel, M., 2009, "The Future of Hydrogen-Opportunities and Challenges," International Journal of Hydrogen Energy, Vol. 34, pp. 615-627. https://doi.org/10.1016/j.ijhydene.2008.11.014
  4. Shayegan, S., Hart, D., Pearson, P. and Joffe, D., 2006, "Analysis of the Cost of Hydrogen Infrastructure for Buses in London," Journal of Power Sources, Vol. 2, pp. 862-874.
  5. Bysveen, M., 2007, "Engine Characteristics of Emissions and Performance Using Mixture of Natural Gas and Hydrogen," Energy, Vol. 32, pp. 482-489. https://doi.org/10.1016/j.energy.2006.07.032
  6. Bauer, C. G. and Forest, T. W., 2001, "Effect of Hydrogen Addition on the Performance of Methan-Fuled Vehicle," International Journal of Hydrogen Energy, Vol. 26, pp. 55-70. https://doi.org/10.1016/S0360-3199(00)00067-7
  7. Park, C. W., Kim, C. G., Choi, Y., Won, S. Y. and Lee, S. Y., 2011, "A study on the NOx Emission Characteristics of HCNG Engine," Transaction of KSAE, Vol. 19, No. 4, pp. 78-83.
  8. Wang, X., Zhang, H., Yao, B., Lei, Y., Sun, X., Wang, D. and Ge, Y., 2012, "Experimental Study on Factors Affecting Lean Combustion Limit of SI Engine Fueled with Compressed Natural Gas and Hydrogen Blends," Energy, Vol. 38, No. 1, pp. 58-65. https://doi.org/10.1016/j.energy.2011.12.042
  9. Heywood, J. B., 1988, Internal Combustion Engine Fundamentals, MCGraw-Hill
  10. Park, C. W., Kim, C. G., Choi, Y., Won, S. Y. and Moriyoshi, Y., 2011,. "The Influences of Hydrogen on the Performance and Emission Characteristics of a Heavy Duty Natural Gas Engine," International Journal of Hydrogen Energy, Vol 36, No. 5, pp. 3739-3745. https://doi.org/10.1016/j.ijhydene.2010.12.021