DOI QR코드

DOI QR Code

정수장 내 축열조 설치 원수열원 히트펌프의 성능분석

Studies on Raw-Water Source Heat Pump Equipped with Thermal Storage Tank in Water Treatment Facility

  • 오선희 (한밭대학교 기계공학과) ;
  • 윤린 (한밭대학교 기계공학과) ;
  • 조용 (한국수자원공사)
  • Oh, Sun Hee (Dept. of Mechanical Engineering, Hanbat Nat' Univ.) ;
  • Yun, Rin (Dept. of Mechanical Engineering, Hanbat Nat' Univ.) ;
  • Cho, Yong (K-water Institute, Korea Water Resources Corporation.)
  • 투고 : 2012.10.15
  • 심사 : 2013.02.19
  • 발행 : 2013.05.01

초록

정수장 내 축열조 설치 원수열원 히트펌프시스템의 동적 특성을 TRNSYS 프로그램을 이용하여 모델링 하였다. 원수열원 히트펌프의 실증평가를 위해 성남정수장 내 축열조가 설치된 히트펌프 실험결과를 이용하여 검증하였고, 본 설비는 2010년 11월부터 운전되고 있다. 모델링 결과 원수열원 히트펌프의 평균 COP는 냉 난방 시 각각 4.97과 3.17을 나타냈다. 축열조 용량은 $5m^3$에서 $20m^3$로 변화시킬 때, 축열조 용량 $10m^3$ 에서 가장 높은 COP와 소비전력이 나타났다. 설치지역으로 서울, 인천, 강릉, 그리고 광주를 고려하였고, 지역에 따른 COP와 소비전력은 큰 변화가 없었으나 소비전력량에 있어서 난방 시에 위도가 높은 서울의 소비전력량이 가장 높으며, 냉방 시에 가장 낮게 나타났다. 본 시스템을 동일한 용량의 물-공기방식의 히트펌프와 비교할 때 평균 25%정도 낮은 소비전력량을 나타냈다.

A raw-water source heat pump equipped with a thermal storage tank was dynamically simulated by TRNSYS, and the results were verified by using the data from a heat pump installed in the Seongnam water treatment facility. The average coefficient of performance (COP) of the raw-water source heat pump based on simulation was 4.97 and 3.17 in the cooling and heating season, respectively. When the volume of the thermal storage tank was changed from 5 to $20m^3$, the highest COP was found at a size of $10m^3$. Considering the regional locations of raw-water source heat pumps at Seoul, Incheon, Gangneung, and Gwangju, Seoul showed the lowest electric power consumption in the cooling season and the highest in the heating season. When a comparison of the performance between the present system and that of a water-air heat pump was conducted, the present system showed lower electric power consumption by 25% than that of a water-air heat pump.

키워드

참고문헌

  1. Baek, N. C. and Sin, U. C., 2003, "An Analysis of Heat Pump System for Hot Water Supply Using Hot Spring Wastewater as a Heat Source," Journal of the Architectural Institute of Korea, Vol. 19, No. 4, pp. 187-194.
  2. Baik, Y. J., Chang, K. C., Park, S. R., Ra, H. S., and Kim, J. Y., 2006., "Performance Analysis of a Sea Water Heat Source Heat Pump," Proceedings of the KSME 2006 Spring Annual Conference, pp. 2342-2347.
  3. Kim, J. T., Baik, Y. J., Chang, K. C., Park, S. R., Ra, H. S., Lee, J. H., 2007., "An Experimental Study on the Performance of a Sea Water Heat Source Cascade Heat Pump," Proceedings of the KSME 2007 Spring Annual Conference, pp. 1081-1085.
  4. Park, C. S., Jeong, T. H., Park, H. H. and Kim, Y. C., 2009, "Performance Characteristics and Economic Assessment of a River Water: Source Heat Pump System," Korea Journal of Air-Conditioning and Refrigeration, Vol. 21, No. 11, pp. 621-628.
  5. Oh, S. H., Yun, R., Cho, Y., 2012, "Modeling and Verification of the Storage Tank Equipped Water Source Heat Pump in Water Treatment Facility," Proceedings of the KSME 2012 Spring Annual Conference, pp. 61-62.
  6. Choi, B, S., and Hong, H. K., Lee, J. S., 2006, "Verification in RTS method by Applying TRNSYS," Proceedings of the SAREK 2006 Summer Annual Conference, pp. 531-535.
  7. Oh, S. H., Yun, R., Cho, Y., 2011., "Analysis of the Cooling and Heating Operation Characteristics for the Raw-Water Source Heat Pump and the Air Source Heat Pump in Water Treatment Facility," Proceedings of the SAREK 2011 Autumn Annual Conference, pp. 1575-1579.